Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties

[1]  N. Lapusta,et al.  Stable creeping fault segments can become destructive as a result of dynamic weakening , 2013, Nature.

[2]  D. Sandwell,et al.  Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate‐and‐state friction properties , 2013 .

[3]  Haluk Ozener,et al.  Onset of aseismic creep on major strike-slip faults , 2012 .

[4]  Jyr‐Ching Hu,et al.  Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer InSAR method with ALOS PALSAR data , 2012 .

[5]  Marie-Pierre Doin,et al.  Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry , 2012 .

[6]  J. Avouac,et al.  Under the Hood of the Earthquake Machine: Toward Predictive Modeling of the Seismic Cycle , 2012, Science.

[7]  Anne Socquet,et al.  Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone , 2012 .

[8]  J. Boatwright,et al.  Long‐Term Creep Rates on the Hayward Fault: Evidence for Controls on the Size and Frequency of Large Earthquakes , 2012 .

[9]  Hernando Tavera,et al.  Interseismic coupling and seismic potential along the Central Andes subduction zone , 2011 .

[10]  Brendan J. Meade,et al.  Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW = 9.0 Tohoku‐oki earthquake , 2011 .

[11]  D. Raucoules,et al.  Spatiotemporal evolution of surface creep in the Parkfield region of the San Andreas Fault (1993–2004) from synthetic aperture radar , 2011 .

[12]  Tomokazu Kobayashi,et al.  Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake , 2011, Nature.

[13]  S. Hickman,et al.  Low strength of deep San Andreas fault gouge from SAFOD core , 2011, Nature.

[14]  Demian M. Saffer,et al.  Weakness of the San Andreas Fault revealed by samples from the active fault zone , 2011 .

[15]  B. Meade,et al.  Partitioning of Localized and Diffuse Deformation in the Tibetan Plateau from Joint Inversions of Geologic and Geodetic Observations , 2011 .

[16]  F. Cotton,et al.  Spatial and temporal evolution of a long term slow slip event: the 2006 Guerrero Slow Slip Event , 2011 .

[17]  Virginie Pinel,et al.  Presentation Of The Small Baseline NSBAS Processing Chain On A Case Example: The ETNA Deformation Monitoring From 2003 to 2010 Using ENVISAT Data , 2011 .

[18]  M. Moreno,et al.  2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone , 2010, Nature.

[19]  Y. Klinger continental strike-slip earthquake segmentation and thickness of the crust , 2010 .

[20]  Anthony Sladen,et al.  Seismic and aseismic slip on the Central Peru megathrust , 2010, Nature.

[21]  Nadia Lapusta,et al.  Towards inferring earthquake patterns from geodetic observations of interseismic coupling , 2010 .

[22]  V. Popov Earthquakes and Friction , 2010 .

[23]  Peizhen Zhang,et al.  Late Quaternary left‐lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau , 2009 .

[24]  F. Tupin,et al.  Time series analysis of Mexico City subsidence constrained by radar interferometry , 2009 .

[25]  Marie-Pierre Doin,et al.  Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models , 2009 .

[26]  Jean-Philippe Avouac,et al.  Spatio-temporal Slip, and Stress Level on the Faults within the Western Foothills of Taiwan: Implications for Fault Frictional Properties , 2009 .

[27]  Yehuda Bock,et al.  Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters , 2009 .

[28]  K. Johnson,et al.  Fault friction parameters inferred from the early stages of afterslip following the 2003 Tokachi‐oki earthquake , 2009 .

[29]  C. Marone,et al.  Frictional behavior of materials in the 3D SAFOD volume , 2009 .

[30]  Shu-Hao Chang,et al.  Modelling temporal variation of surface creep on the Chihshang fault in eastern Taiwan with velocity-strengthening friction , 2009 .

[31]  Shui-Beih Yu,et al.  Coseismic and postseismic deformation associated with the 2003 Chengkung, Taiwan, earthquake , 2009 .

[32]  Roland Bürgmann,et al.  Spatial variations in slip deficit on the central San Andreas Fault from InSAR , 2008 .

[33]  Marie-Pierre Doin,et al.  Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR , 2008 .

[34]  Basil Tikoff,et al.  Aseismic slip and fault‐normal strain along the central creeping section of the San Andreas fault , 2008 .

[35]  Jean-Philippe Avouac,et al.  Heterogeneous coupling on the Sumatra megathrust constrained from geodetic and paleogeodetic measurements , 2008 .

[36]  Fabrizio Novali,et al.  Creep on the Rodgers Creek fault, northern San Francisco Bay area from a 10 year PS‐InSAR dataset , 2007 .

[37]  Peizhen Zhang,et al.  Present‐day crustal motion within the Tibetan Plateau inferred from GPS measurements , 2007 .

[38]  H. Zebker,et al.  Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos , 2007 .

[39]  J. Avouac,et al.  Modeling afterslip and aftershocks following the 1992 Landers earthquake , 2007 .

[40]  Tim J. Wright,et al.  Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling , 2007 .

[41]  Rowena B. Lohman,et al.  Earthquake swarms driven by aseismic creep in the Salton Trough, California , 2007 .

[42]  Yann Klinger,et al.  Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China , 2007 .

[43]  G. Peltzer,et al.  Fluid-controlled faulting process in the Asal Rift, Djibouti, from 8 yr of radar interferometry observations , 2007 .

[44]  Steven G. Wesnousky,et al.  Predicting the endpoints of earthquake ruptures , 2006, Nature.

[45]  S. Titus,et al.  Thirty-Five-Year Creep Rates for the Creeping Segment of the San Andreas Fault and the Effects of the 2004 Parkfield Earthquake: Constraints from Alignment Arrays, Continuous Global Positioning System, and Creepmeters , 2006 .

[46]  Yehuda Bock,et al.  Frictional Afterslip Following the 2005 Nias-Simeulue Earthquake, Sumatra , 2006, Science.

[47]  Akira Hasegawa,et al.  Interplate coupling beneath NE Japan inferred from three-dimensional displacement field , 2006 .

[48]  Laurent Ferro-Famil,et al.  Range resolution improvement of airborne SAR images , 2006, IEEE Geoscience and Remote Sensing Letters.

[49]  Semih Ergintav,et al.  Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): Rate and extent from InSAR , 2005 .

[50]  Paul Segall,et al.  Spatiotemporal evolution of a transient slip event on the San Andreas fault near Parkfield, California , 2005 .

[51]  Robert M. Nadeau,et al.  Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data , 2005 .

[52]  R. Bürgmann,et al.  Creep and quakes on the northern transition zone of the San Andreas fault from GPS and InSAR data , 2005 .

[53]  E. Brodsky,et al.  New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera , 2005 .

[54]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[55]  F. Waldhauser,et al.  Streaks, multiplets, and holes: High‐resolution spatio‐temporal behavior of Parkfield seismicity , 2004 .

[56]  Paul Segall,et al.  Space time distribution of afterslip following the 2003 Tokachi‐oki earthquake: Implications for variations in fault zone frictional properties , 2004 .

[57]  P. Rosen,et al.  Updated repeat orbit interferometry package released , 2004 .

[58]  Hugo Perfettini,et al.  Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan , 2004 .

[59]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[60]  R. Bürgmann,et al.  Dynamics of Izmit Earthquake Postseismic Deformation and Loading of the Duzce Earthquake Hypocenter , 2002 .

[61]  F. Jeng,et al.  Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan , 2001 .

[62]  Pascal Bernard,et al.  Source parameters and tectonic origin of the 1996 June 1 Tianzhu (Mw=5.2) and 1995 July 21 Yongden (Mw=5.6) earthquakes near the Haiyuan fault (Gansu, China) , 2001 .

[63]  J. Rice,et al.  Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate‐ and state‐dependent friction , 2000 .

[64]  W. Schellart,et al.  Shear test results for cohesion and friction coefficients for different granular materials: Scaling implications for their usage in analogue modelling , 2000 .

[65]  R. Bürgmann,et al.  Earthquake potential along the northern hayward fault, california , 2000, Science.

[66]  X. Pichon,et al.  Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations , 2000 .

[67]  Rodolphe Cattin,et al.  Modeling mountain building and the seismic cycle in the Himalaya of Nepal , 2000 .

[68]  X. Pichon,et al.  Full interseismic locking of the Nankai and Japan‐west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS , 2000 .

[69]  A. Rubin,et al.  Streaks of microearthquakes along creeping faults , 1999, Nature.

[70]  Frederick J. Ryerson,et al.  Postglacial left slip rate and past occurrence of M≥8 earthquakes on the Western Haiyuan Fault, Gansu, China , 1999 .

[71]  T. McEvilly,et al.  Fault slip rates at depth from recurrence intervals of repeating microearthquakes , 1999, Science.

[72]  F. Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[73]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[74]  C. Marone LABORATORY-DERIVED FRICTION LAWS AND THEIR APPLICATION TO SEISMIC FAULTING , 1998 .

[75]  C. Scholz Earthquakes and friction laws , 1998, Nature.

[76]  R. Simpson,et al.  Creep Response of the Hayward Fault to Stress Changes Caused by the Loma Prieta Earthquake , 1997 .

[77]  Walter H. F. Smith,et al.  New version of the generic mapping tools , 1995 .

[78]  Bertrand Meyer,et al.  Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China) , 1995 .

[79]  M. Kasser,et al.  Detection of creep along the Philippine fault : first results of geodetic measurements on Leyte island, central Philippine , 1994 .

[80]  Peter Molnar,et al.  Bounds on the Holocene Slip Rate of the Haiyuan Fault, North-Central China , 1988, Quaternary Research.

[81]  P. Molnar,et al.  Displacement along the Haiyuan fault associated with the great 1920 Haiyuan, China, earthquake , 1987 .

[82]  A. Ruina Slip instability and state variable friction laws , 1983 .

[83]  W. Prescott,et al.  Short-range distance measurements along the San Andreas fault system in central California, 1975 to 1979 , 1981 .

[84]  J. Dieterich Modeling of rock friction: 1. Experimental results and constitutive equations , 1979 .

[85]  J. Byerlee Friction of rocks , 1978 .

[86]  J. C. Savage,et al.  Geodetic determination of relative plate motion in central California , 1973 .

[87]  T. H. Rogers,et al.  Active displacement on the Calaveras fault zone at Hollister, California , 1971, Bulletin of the Seismological Society of America.

[88]  N. N. Ambraseys,et al.  Some characteristic features of the Anatolian fault zone , 1970 .

[89]  W. Brace,et al.  Stick-Slip as a Mechanism for Earthquakes , 1966, Science.

[90]  C. Whitten,et al.  Creep on the San Andreas fault , 1960 .

[91]  J. Avouac,et al.  Earth and Planetary Science Letters , 2022 .