Maximal quantum randomness in Bell tests

The non-local correlations exhibited when measuring entangled particles can be used to certify the presence of genuine randomness in Bell experiments. While non-locality is necessary for randomness certification, it is unclear when and why non-locality certifies maximal randomness. We provide here a simple argument to certify the presence of maximal local and global randomness based on symmetries of a Bell inequality and the existence of a unique quantum probability distribution that maximally violates it. Using our findings, we prove the existence of N-party Bell test attaining maximal global randomness, that is, where a combination of measurements by each party provides N perfect random bits.

[1]  Stefano Pironio,et al.  Randomness versus nonlocality and entanglement. , 2011, Physical review letters.

[2]  Dax Enshan Koh,et al.  Effects of reduced measurement independence on Bell-based randomness expansion. , 2012, Physical review letters.

[3]  S. Braunstein,et al.  Wringing out better bell inequalities , 1990 .

[4]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[5]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[6]  T Franz,et al.  Extremal quantum correlations and cryptographic security. , 2010, Physical review letters.

[7]  M. Wolf,et al.  All-multipartite Bell-correlation inequalities for two dichotomic observables per site , 2001, quant-ph/0102024.

[8]  N. Gisin,et al.  Guess your neighbor's input: a multipartite nonlocal game with no quantum advantage. , 2010, Physical review letters.

[9]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[10]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[11]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[12]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[13]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[14]  A. Acín,et al.  Bounding the set of quantum correlations. , 2006, Physical review letters.

[15]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[16]  Stefano Pironio Lifting Bell inequalities , 2005 .

[17]  Rodrigo Gallego,et al.  Full randomness from arbitrarily deterministic events , 2012, Nature Communications.

[18]  M. Lewenstein,et al.  Bell inequalities with no quantum violation and unextendable product bases. , 2011, Physical review letters.

[19]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[20]  Stefano Pironio,et al.  Maximally Non-Local and Monogamous Quantum Correlations , 2006, Physical review letters.