Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae.

Peridinin-chlorophyll-protein (PCP) is a unique light-harvesting protein that uses carotenoids as its primary light-absorbers. This paper theoretically investigates excitation transfer between carotenoids and chlorophylls in PCP of the dinoflagellate Amphidinium carterae. Calculations based on a description of the electronic states of the participating chromophores and on the atomic level structure of PCP seek to identify the mechanism and pathways of singlet excitation flow. After light absorption the optically allowed states of peridinins share their electronic excitation in excitonic fashion, but are not coupled strongly to chlorophyll residues in PCP. Instead, a gateway to chlorophyll Q(y) excitations is furnished through a low-lying optically forbidden excited state, populated through internal conversion. Carbonyl group and non-hydrogen side groups of peridinin are instrumental in achieving the respective coupling to chlorophyll. Triplet excitation transfer to peridinins, mediated by electron exchange, is found to efficiently protect chlorophylls against photo-oxidation.

[1]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[2]  Klaus Schulten,et al.  Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria , 1999 .

[3]  J. Pople,et al.  Electron interaction in unsaturated hydrocarbons , 1953 .

[4]  Robert G. Parr,et al.  A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II , 1953 .

[5]  R. Iglesias-Prieto,et al.  Apoprotein composition and spectroscopic characterization of the water-soluble peridinin—chlorophyll a—proteins from three symbiotic dinoflagellates , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  P. Knight Electronic Excitation Energy Transfer in Condensed Matter , 1984 .

[7]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[8]  E. Peterman,et al.  Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. , 2000, Biochemistry.

[9]  R. Cogdell,et al.  Optical and optically detected magnetic resonance investigation on purple photosynthetic bacterial antenna complexes , 1995 .

[10]  Graham R. Fleming,et al.  Electronic Excitation Transfer from Carotenoid to Bacteriochlorophyll in the Purple Bacterium Rhodopseudomonas acidophila , 1998 .

[11]  M. Wasielewski,et al.  Mechanism of Energy Transfer from Carotenoids to Bacteriochlorophyll: Light-Harvesting by Carotenoids Having Different Extents of π-Electron Conjugation Incorporated into the B850 Antenna Complex from the Carotenoidless Bacterium Rhodobacter sphaeroides R-26.1 , 1998 .

[12]  Th. Förster Electronic Absorption Spectra and Geometry of Organic Molecules , 1970 .

[13]  David J. Gosztola,et al.  Excited state properties of peridinin: Observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids , 1999 .

[14]  R. Hiller,et al.  Structure-Based Calculations of the Optical Spectra of the Light-Harvesting Peridinin−Chlorophyll−Protein Complexes from Amphidinium carterae and Heterocapsa pygmaea , 1999 .

[15]  K. Diederichs,et al.  Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae , 1996, Science.

[16]  G. Fleming,et al.  Electronic Interactions in Photosynthetic Light-Harvesting Complexes: The Role of Carotenoids , 1997 .

[17]  B. Prézelin,et al.  Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. , 1976, Biochemistry.

[18]  I. Yamazaki,et al.  Molecular structure and optical properties of carotenoids for the in vivo energy transfer function in the algal photosynthetic pigment system , 1992 .

[19]  J. Koutecký Contribution to the Theory of Alternant Systems , 1966 .

[20]  K. Diederichs,et al.  Förster excitation energy transfer in peridinin-chlorophyll-a-protein. , 2000, Biophysical journal.

[21]  M. Mimuro,et al.  Calculation of the excitation transfer matrix elements between the S2 or S1 state of carotenoid and the S2 or S1 state of bacteriochlorophyll , 1993 .

[22]  T. Inaba,et al.  Mechanism of the Carotenoid-to-Bacteriochlorophyll Energy Transfer via the S1 State in the LH2 Complexes from Purple Bacteria , 2000 .

[23]  Klaus Schulten,et al.  Excitons and excitation transfer in the photosynthetic unit of purple bacteria , 1998 .

[24]  Klaus Schulten,et al.  The low‐lying electronic excitations in long polyenes: A PPP‐MRD‐CI study , 1986 .

[25]  N. Trinajstic,et al.  Ground states of conjugated molecules—XVIII , 1965 .

[26]  P. Falkowski,et al.  Aquatic Photosynthesis: Second Edition , 1997 .

[27]  Michael J. S. Dewar,et al.  Ground states of conjugated molecules. XII. Improved calculations for compounds containing nitrogen or oxygen , 1969 .

[28]  R. Knox,et al.  On the rate of triplet excitation transfer in the diffusive limit , 1979 .

[29]  Rudolph Pariser,et al.  Theory of the Electronic Spectra and Structure of the Polyacenes and of Alternant Hydrocarbons , 1956 .

[30]  Klaus Schulten,et al.  On the origin of a low-lying forbidden transition in polyenes and related molecules , 1972 .

[31]  S. Mukamel,et al.  Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes , 1997 .

[32]  G. Fleming,et al.  Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method , 1998 .

[33]  I. Yamazaki,et al.  Excitation energy transfer in carotenoid-chlorophyll protein complexes probed by femtosecond fluorescence decays , 1996 .

[34]  M. Wasielewski,et al.  Singlet and triplet energy transfer in the peridinin-chlorophyll a-protein from Amphidinium carterae , 1999 .

[35]  J. Cizek,et al.  Correlation effects in the low–lying excited states of the PPP models of alternant hydrocarbons. I. Qualitative rules for the effect of limited configuration interaction , 1974 .

[36]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[37]  Klaus Schulten,et al.  Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria , 1997 .

[38]  Andrew P. Shreve,et al.  Determination of the S2 lifetime of β-carotene , 1991 .

[39]  K Schulten,et al.  Architecture and mechanism of the light-harvesting apparatus of purple bacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Klaus Schulten,et al.  Excitation energy trapping by the reaction center of Rhodobacter Sphaeroides , 2000 .

[41]  Yoshinori Fujiyoshi,et al.  Atomic Model of Plant Light‐Harvesting Complex by Electron Crystallography. , 1994 .