The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data
暂无分享,去创建一个
[1] Peyman Milanfar,et al. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement , 2001, IEEE Trans. Image Process..
[2] Per Christian Hansen. Regularizational tools - A MATLAB package for analysis and solution of discrete ill-posed problems: Version 3.0 for MATLAB 5.2 , 1998 .
[3] Petr Tichý,et al. On sensitivity of Gauss–Christoffel quadrature , 2007, Numerische Mathematik.
[4] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .
[5] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[6] C. Paige. Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .
[7] Roland W. Freund,et al. On Adaptive Weighted Polynomial Preconditioning for Hermitian Positive Definite Matrices , 1994, SIAM J. Sci. Comput..
[8] Dianne P. O'Leary,et al. Residual periodograms for choosing regularization parameters for ill-posed problems , 2008 .
[9] D. O’Leary,et al. A Bidiagonalization-Regularization Procedure for Large Scale Discretizations of Ill-Posed Problems , 1981 .
[10] Misha Elena Kilmer,et al. Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems , 2000, SIAM J. Matrix Anal. Appl..
[11] Gene H. Golub,et al. Regularization by Truncated Total Least Squares , 1997, SIAM J. Sci. Comput..
[12] Åke Björck,et al. An implicit shift bidiagonalization algorithm for ill-posed systems , 1994 .
[13] Martin Hanke,et al. On Lanczos Based Methods for the Regularization of Discrete Ill-Posed Problems , 2001 .
[14] P. Hansen,et al. Exploiting Residual Information in the Parameter Choice for Discrete Ill-Posed Problems , 2006 .
[15] Misha Elena Kilmer,et al. A Projection-Based Approach to General-Form Tikhonov Regularization , 2007, SIAM J. Sci. Comput..
[16] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[17] ˇ IvetaHn,et al. Lanczos tridiagonalization, Golub-Kahan bidiagonalization and core problem , 2006 .
[18] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[19] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[20] Michael A. Saunders,et al. Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.
[21] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[22] J. Nagy,et al. A weighted-GCV method for Lanczos-hybrid regularization. , 2007 .
[23] Christopher C. Paige,et al. Scaled total least squares fundamentals , 2002, Numerische Mathematik.
[24] Lothar Reichel,et al. L-Curve and Curvature Bounds for Tikhonov Regularization , 2004, Numerical Algorithms.
[25] Hongyuan Zha,et al. Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications , 1999, SIAM J. Sci. Comput..
[26] J. Gillis,et al. Linear Differential Operators , 1963 .
[27] P. Hansen,et al. Iterative regularization with minimum-residual methods , 2007 .
[28] P. Hansen,et al. Noise propagation in regularizing iterations for image deblurring , 2008 .
[29] Per Christian Hansen,et al. Reconstruction of Single-Grain Orientation Distribution Functions for Crystalline Materials , 2009, SIAM J. Imaging Sci..
[30] Dianne P. O'Leary,et al. Near-Optimal Parameters for Tikhonov and Other Regularization Methods , 2001, SIAM J. Sci. Comput..
[31] G. Golub,et al. Generalized cross-validation for large scale problems , 1997 .
[32] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[33] Christopher C. Paige,et al. Unifying Least Squares, Total Least Squares and Data Least Squares , 2002 .
[34] Sabine Van Huffel,et al. Total Least Squares and Errors-in-variables Modeling , 2007, Comput. Stat. Data Anal..
[35] Z. Drmač,et al. A new stable bidiagonal reduction algorithm , 2005 .
[36] G. Golub,et al. Estimation of the L-Curve via Lanczos Bidiagonalization , 1999 .
[37] D. Calvetti,et al. Tikhonov regularization and the L-curve for large discrete ill-posed problems , 2000 .
[38] Christopher C. Paige,et al. A Useful Form of Unitary Matrix Obtained from Any Sequence of Unit 2-Norm n-Vectors , 2009, SIAM J. Matrix Anal. Appl..
[39] Bert W. Rust,et al. Parameter Selection for Constrained Solutions to III-Posed Problems , 2000 .
[40] Zdenek Strakos,et al. Core Problems in Linear Algebraic Systems , 2005, SIAM J. Matrix Anal. Appl..
[41] Zdenek Strakos,et al. Model reduction using the Vorobyev moment problem , 2009, Numerical Algorithms.
[42] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[43] L. Shapley,et al. Geometry of Moment Spaces , 1953 .
[44] V. A. Morozov,et al. Methods for Solving Incorrectly Posed Problems , 1984 .
[45] M. Saunders. Computing projections with LSQR , 1997 .
[46] Iveta Hnÿ. Lanczos tridiagonalization and core problems , 2007 .
[47] Martin Vetterli,et al. Fast Fourier transforms: a tutorial review and a state of the art , 1990 .
[48] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.
[49] Zdeněk Strakoš,et al. Lanczos tridiagonalization and core problems , 2007 .