The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data

Regularization techniques based on the Golub-Kahan iterative bidiagonal- ization belong among popular approaches for solving large ill-posed problems. First, the original problem is projected onto a lower dimensional subspace using the bidi- agonalization algorithm, which by itself represents a form of regularization by pro- jection. The projected problem, however, inherits a part of the ill-posedness of the original problem, and therefore some form of inner regularization must be applied. Stopping criteria for the whole process are then based on the regularization of the projected (small) problem. In this paper we consider an ill-posed problem with a noisy right-hand side (ob- servation vector), where the noise level is unknown. We show how the information

[1]  Peyman Milanfar,et al.  Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement , 2001, IEEE Trans. Image Process..

[2]  Per Christian Hansen Regularizational tools - A MATLAB package for analysis and solution of discrete ill-posed problems: Version 3.0 for MATLAB 5.2 , 1998 .

[3]  Petr Tichý,et al.  On sensitivity of Gauss–Christoffel quadrature , 2007, Numerische Mathematik.

[4]  B. Fischer Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .

[5]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[6]  C. Paige Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .

[7]  Roland W. Freund,et al.  On Adaptive Weighted Polynomial Preconditioning for Hermitian Positive Definite Matrices , 1994, SIAM J. Sci. Comput..

[8]  Dianne P. O'Leary,et al.  Residual periodograms for choosing regularization parameters for ill-posed problems , 2008 .

[9]  D. O’Leary,et al.  A Bidiagonalization-Regularization Procedure for Large Scale Discretizations of Ill-Posed Problems , 1981 .

[10]  Misha Elena Kilmer,et al.  Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems , 2000, SIAM J. Matrix Anal. Appl..

[11]  Gene H. Golub,et al.  Regularization by Truncated Total Least Squares , 1997, SIAM J. Sci. Comput..

[12]  Åke Björck,et al.  An implicit shift bidiagonalization algorithm for ill-posed systems , 1994 .

[13]  Martin Hanke,et al.  On Lanczos Based Methods for the Regularization of Discrete Ill-Posed Problems , 2001 .

[14]  P. Hansen,et al.  Exploiting Residual Information in the Parameter Choice for Discrete Ill-Posed Problems , 2006 .

[15]  Misha Elena Kilmer,et al.  A Projection-Based Approach to General-Form Tikhonov Regularization , 2007, SIAM J. Sci. Comput..

[16]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[17]  ˇ IvetaHn,et al.  Lanczos tridiagonalization, Golub-Kahan bidiagonalization and core problem , 2006 .

[18]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[19]  C. Paige Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .

[20]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.

[21]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[22]  J. Nagy,et al.  A weighted-GCV method for Lanczos-hybrid regularization. , 2007 .

[23]  Christopher C. Paige,et al.  Scaled total least squares fundamentals , 2002, Numerische Mathematik.

[24]  Lothar Reichel,et al.  L-Curve and Curvature Bounds for Tikhonov Regularization , 2004, Numerical Algorithms.

[25]  Hongyuan Zha,et al.  Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications , 1999, SIAM J. Sci. Comput..

[26]  J. Gillis,et al.  Linear Differential Operators , 1963 .

[27]  P. Hansen,et al.  Iterative regularization with minimum-residual methods , 2007 .

[28]  P. Hansen,et al.  Noise propagation in regularizing iterations for image deblurring , 2008 .

[29]  Per Christian Hansen,et al.  Reconstruction of Single-Grain Orientation Distribution Functions for Crystalline Materials , 2009, SIAM J. Imaging Sci..

[30]  Dianne P. O'Leary,et al.  Near-Optimal Parameters for Tikhonov and Other Regularization Methods , 2001, SIAM J. Sci. Comput..

[31]  G. Golub,et al.  Generalized cross-validation for large scale problems , 1997 .

[32]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[33]  Christopher C. Paige,et al.  Unifying Least Squares, Total Least Squares and Data Least Squares , 2002 .

[34]  Sabine Van Huffel,et al.  Total Least Squares and Errors-in-variables Modeling , 2007, Comput. Stat. Data Anal..

[35]  Z. Drmač,et al.  A new stable bidiagonal reduction algorithm , 2005 .

[36]  G. Golub,et al.  Estimation of the L-Curve via Lanczos Bidiagonalization , 1999 .

[37]  D. Calvetti,et al.  Tikhonov regularization and the L-curve for large discrete ill-posed problems , 2000 .

[38]  Christopher C. Paige,et al.  A Useful Form of Unitary Matrix Obtained from Any Sequence of Unit 2-Norm n-Vectors , 2009, SIAM J. Matrix Anal. Appl..

[39]  Bert W. Rust,et al.  Parameter Selection for Constrained Solutions to III-Posed Problems , 2000 .

[40]  Zdenek Strakos,et al.  Core Problems in Linear Algebraic Systems , 2005, SIAM J. Matrix Anal. Appl..

[41]  Zdenek Strakos,et al.  Model reduction using the Vorobyev moment problem , 2009, Numerical Algorithms.

[42]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[43]  L. Shapley,et al.  Geometry of Moment Spaces , 1953 .

[44]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[45]  M. Saunders Computing projections with LSQR , 1997 .

[46]  Iveta Hnÿ Lanczos tridiagonalization and core problems , 2007 .

[47]  Martin Vetterli,et al.  Fast Fourier transforms: a tutorial review and a state of the art , 1990 .

[48]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[49]  Zdeněk Strakoš,et al.  Lanczos tridiagonalization and core problems , 2007 .