Scoping and screening complex reaction networks using stochastic optimization

A systematic methodology to target the performance of chemical reactors with the use of stochastic optimization is presented. The approach employs a two-level strategy where targets are followed by the proposition of reactor configurations that match or are near the desired performance. The targets can be used for synthesis and retrofit problems, as they can provide the incentives to modify the operation, and ideas in developing the reactor design. The application of stochastic optimization enables confidence in the optimization results, can afford particularly nonlinear reactor models, and is not restricted by the dimensionality or the size of the problem.

[1]  Christodoulos A. Floudas,et al.  Methane conversion to ethylene and acetylene: Optimal control with chlorine, oxygen, and heat flux , 1996 .

[2]  C. H. Amundson,et al.  Hydrolysis of lactose in skim milk by immobilized β‐galactosidase in a spiral flow reactor , 1989, Biotechnology and Bioengineering.

[3]  Serge Domenech,et al.  Separation sequence synthesis how to use simulated annealing procedure , 1993 .

[4]  Antonis C. Kokossis,et al.  Molecular design synthesis using stochastic optimisation as a tool for scoping and screening , 1998 .

[5]  Antonis C. Kokossis,et al.  Stochastic optimisation of complex reaction systems , 1996 .

[6]  Serge Domenech,et al.  A mixed method for retrofiting heat-exchanger networks , 1998 .

[7]  Piyush B. Shah,et al.  Design targets of separator and reactor-separator systems using conceptual programming , 1997 .

[8]  Diane Hildebrandt,et al.  The attainable region for segregated, maximum mixed, and other reactor models , 1994 .

[9]  Lorenz T. Biegler,et al.  A superstructure based approach to chemical reactor network synthesis , 1990 .

[10]  Ignacio E. Grossmann,et al.  Mixed-integer programming approach for the synthesis of integrated process flowsheets , 1985 .

[11]  D. Glasser,et al.  Optimal Mixing for Exothermic Reversible Reactions , 1992 .

[12]  M. F. Malone,et al.  Attainable regions for reaction with separation , 1997 .

[13]  Diane Hildebrandt,et al.  The Attainable Region and Pontryagin's Maximum Principle , 1999 .

[14]  M. Feinberg,et al.  Optimal reactor design from a geometric viewpoint—I. Universal properties of the attainable region , 1997 .

[15]  Christodoulos A. Floudas,et al.  For the Special Issue Honoring Professor Roy Jackson Optimization Framework for the Synthesis of Chemical Reactor Networks , 1998 .

[16]  Diane Hildebrandt,et al.  Reactor and process synthesis , 1997 .

[17]  Antonis C. Kokossis,et al.  Hypertargets: a Conceptual Programming approach for the optimisation of industrial heat exchanger networks—I. Grassroots design and network complexity , 1999 .

[18]  D. Glasser,et al.  A geometric approach to steady flow reactors: the attainable region and optimization in concentration space , 1987 .

[19]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[20]  New generation tools for multiphase reaction systems: A validated systematic methodology for novelty and design automation , 1998 .

[21]  R. Luus,et al.  Multiplicity of solutions in the optimization of a bifunctional catalyst blend in a tubular reactor , 1992 .

[22]  Antonis C. Kokossis,et al.  A new approach for the optimal retrofit of heat exchanger networks , 1996 .

[23]  Luis Otávio Aleotti Maia,et al.  Synthesis of utility systems by simulated annealing , 1995 .

[24]  H. Das,et al.  Scheduling of serial multiproduct batch processes via simulated annealing , 1990 .

[25]  Daniel Yat Chiu Ng,et al.  The effect of incomplete mixing on conversion in homogeneous reactions , 1965 .

[26]  Rakesh Govind,et al.  Yield optimization for complex reactor systems , 1981 .

[27]  Christodoulos A. Floudas,et al.  Synthesis of isothermal reactor—separator—recycle systems , 1991 .

[28]  F. J. M. Horn,et al.  Optimum distributed feed reactors for exothermic reversible reactions , 1967 .

[29]  Peter T. Cummings,et al.  Algorithmic efficiency of simulated annealing for heat exchanger network design , 1990 .

[30]  Diane Hildebrandt,et al.  Optimal reactor structures for exothermic reversible reactions with complex kinetics , 1996 .

[31]  Serge Domenech,et al.  Process optimization by simulated annealing and NLP procedures. Application to heat exchanger network synthesis , 1997 .

[32]  Lorenz T. Biegler,et al.  Targeting strategies for the synthesis and energy integration of nonisothermal reactor networks , 1992 .

[33]  Mark A. Stadtherr,et al.  A modification of Powell's dogleg method for solving systems of nonlinear equations , 1981 .

[34]  Urmila M. Diwekar,et al.  Synthesis under uncertainty with simulators , 1997 .

[35]  Urmila M. Diwekar,et al.  Process synthesis under uncertainty: A penalty function approach , 1996 .

[36]  S. Macchietto,et al.  Design and synthesis of batch plants : MINLP solution based on a stochastic method , 1997 .

[37]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[38]  Antonis C. Kokossis,et al.  Development of novel multiphase reactors using a systematic design framework , 1997 .

[39]  D. Glasser,et al.  The attainable region and optimal reactor structures , 1990 .

[40]  R. Jackson Optimization of chemical reactors with respect to flow configuration , 1968 .

[41]  R. Govind,et al.  Synthesis of optimal serial reactor structures for homogeneous reactions. Part I: Isothermal reactors , 1985 .

[42]  L. Biegler,et al.  Constructive targeting approaches for the synthesis of chemical reactor networks , 1992 .

[43]  L. Biegler,et al.  Algorithmic synthesis of chemical reactor networks using mathematical programming , 1986 .

[44]  Antonis C. Kokossis,et al.  Hypertargets: a Conceptual Programming approach for the optimisation of industrial heat exchanger networks—Part III. Industrial applications , 1999 .

[45]  Antonis C. Kokossis,et al.  Hypertargets: a Conceptual Programming approach for the optimisation of industrial heat exchanger networks — II. Retrofit design , 1999 .

[46]  Lorenz T. Biegler,et al.  Developing Targets for the Performance Index of a Chemical Reactor Network: Isothermal Systems , 1988 .

[47]  Ehl Emile Aarts,et al.  Statistical cooling : a general approach to combinatorial optimization problems , 1985 .

[48]  D. C. Dyson,et al.  Optimum Adiabatic Cascade Reactor with Direct Intercooling , 1969 .

[49]  Rakesh Govind,et al.  Synthesis of optimal serial reactor structures for homogeneous reactions. Part II: Nonisothermal reactors , 1985 .

[50]  J. D. Paynter,et al.  Determination of optimal reactor type , 1970 .

[51]  Diane Hildebrandt,et al.  Choosing optimal control policies using the attainable region approach , 1999 .

[52]  B. Gidas Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .

[53]  P. Floquet,et al.  Synthesis of optimal reactor networks using mathematical programming and simulated annealing , 1997 .

[54]  U. Diwekar,et al.  Stochastic annealing for synthesis under uncertainty , 1995 .

[55]  Lorenz T. Biegler,et al.  Synthesis of Optimal Chemical Reactor Networks , 1996 .

[56]  Ka Ming Ng,et al.  Screening procedure for synthesizing isothermal multiphase reactors , 1998 .

[57]  R. Aris Studies in optimization—IV: The optimum conditions for a single reaction , 1961 .

[58]  Iftekhar A. Karimi,et al.  Preliminary design of multiproduct noncontinuous plants using simulated annealing , 1991 .

[59]  D. Glasser,et al.  Geometry of the Attainable Region Generated by Reaction and Mixing: With and without Constraints , 1990 .

[60]  Serge Domenech,et al.  Synthesis of heat‐exchanger network by simulated annealing and NLP procedures , 1997 .

[61]  A. L. Ravimohan Optimization of chemical reactor networks with respect to flow configuration , 1971 .

[62]  Diane Hildebrandt,et al.  Fischer-Tropsch synthesis: DRIFTS and SIMS surface investigation of Co and Co/Ru on titania supports , 1997 .

[63]  Peter T. Cummings,et al.  Process optimization via simulated annealing: Application to network design , 1989 .

[64]  Rutherford Aris Studies in optimization—III: The optimum operating conditions in sequences of stirred tank reactors , 1960 .