Constant-Time Convexity Problems on Dense Reconfigurable Meshes

Recently the authors have shown that the versatility of the reconfigurable mesh can be exploited to devise 0(1) time algorithms for a number of important computational tasks relevant to image processing, computer graphics, and computer vision. Specifically, we have shown that if one or two n-vertex (convex) polygons are pretiled, one vertex per processor, onto a reconfigurable mesh of size sqrt n X sqrt n, then a number of geometric problems can be solved in 0(1) time. These include testing an arbitrary polygon for convexity, the point location problem, the supporting lines problem, the stabbing problem, constructing the common tangents of two separable convex polygons, deciding whether two convex polygons intersect, and computing the smallest distance between the boundaries of two convex polygons. The novelty of these algorithms is that the problems are solved in the dense case. The purpose of this paper is to add to the list of problems that can be solved in 0(1) time in the dense case. The problems that we address are: determining the minimum area corner triangle for a convex polygon, determining the k-maximal vertices of a restricted class of convex polygons, updating the convex hull of a convex polygon in the presence of a set of query points, and determining a point that belongs to exactly one of two given convex polygons.

[1]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[2]  Shahid H. Bokhari,et al.  Finding Maximum on an Array Processor with a Global Bus , 1984, IEEE Transactions on Computers.

[3]  R S Poulsen,et al.  Segmentation of cervical cell images. , 1977, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[4]  Yosi Ben-Asher,et al.  Algorithms and optic implementation for reconfigurable networks , 1990, Proceedings of the 5th Jerusalem Conference on Information Technology, 1990. 'Next Decade in Information Technology'.

[5]  Jerome Rothstein Bus automata, brains, and mental models , 1988, IEEE Trans. Syst. Man Cybern..

[6]  Ivan Stojmenovic,et al.  An optimal parallel algorithm for solving the maximal elements problem in the plane , 1988, Parallel Comput..

[7]  Stephan Olariu,et al.  Constant-Time Convexity Problems on Reconfigurable Meshes , 1995, J. Parallel Distributed Comput..

[8]  David Vernon,et al.  Machine vision - automated visual inspection and robot vision , 1991 .

[9]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[10]  J. Zhang,et al.  Fundamental data movement algorithms for reconfigurable meshes , 1992, Eleventh Annual International Phoenix Conference on Computers and Communication [1992 Conference Proceedings].

[11]  George W. Stroke,et al.  Optical computing , 1972, IEEE Spectrum.

[12]  Viktor K. Prasanna,et al.  Efficient Parallel Algorithms for Some Geometric Problems on Reconfigurable Mesh , 1992, ICPP.

[13]  Stephan Olariu,et al.  Fast computer vision algorithms for reconfigurable meshes , 1992, Image Vis. Comput..

[14]  Alok Aggarwal,et al.  Optimal Bounds for Finding Maximum on Array of Processors with k Global Buses , 1986, IEEE Transactions on Computers.

[15]  Godfried T. Toussaint,et al.  Movable Separability of Sets , 1985 .

[16]  Dionysios I. Reisis,et al.  Parallel Computations on Reconfigurable Meshes , 1993, IEEE Trans. Computers.

[17]  Stephan Olariu,et al.  Optimal convex hull algorithms on enhanced meshes , 1993, BIT Comput. Sci. Sect..

[18]  Hungwen Li,et al.  Connection Autonomy in SIMD Computers: A VLSI Implementation , 1989, J. Parallel Distributed Comput..

[19]  Stephan Olariu,et al.  Constant-time convex polygon algorithms on reconfigurable meshes , 1993, Other Conferences.

[20]  Selim G. Akl,et al.  Parallel computational geometry , 1992 .

[21]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[22]  Massimo Maresca,et al.  Hardware Suport for Fast Reconfigurability in Processor Arrays , 1993, ICPP.

[23]  D. Parkinson,et al.  The AMT DAP 500 , 1988, Digest of Papers. COMPCON Spring 88 Thirty-Third IEEE Computer Society International Conference.

[24]  David B. Shu,et al.  The Gated Interconnection Network for Dynamic Programming , 1988 .

[25]  Massimo Maresca,et al.  Polymorphic-Torus Network , 1989, IEEE Trans. Computers.

[26]  Stephan Olariu,et al.  Constant-Time Convexity Problems on Reconfigurable Meshes , 1994, J. Parallel Distributed Comput..

[27]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.