Brain State Control by Closed-Loop Environmental Feedback

Brain state regulates sensory processing and motor control for adaptive behavior. Internal mechanisms of brain state control are well studied, but the role of external modulation from the environment is not well understood. Here, we examined the role of closed-loop environmental (CLE) feedback, in comparison to open-loop sensory input, on brain state and behavior in diverse vertebrate systems. In fictively swimming zebrafish, CLE feedback for optomotor stability controlled brain state by reducing coherent neuronal activity. The role of CLE feedback in brain state was also shown in a model of rodent active whisking, where brief interruptions in this feedback enhanced signal-to-noise ratio for detecting touch. Finally, in monkey visual fixation, artificial CLE feedback suppressed stimulus-specific neuronal activity and improved behavioral performance. Our findings show that the environment mediates continuous closed-loop feedback that controls neuronal gain, regulating brain state, and that brain function is an emergent property of brain-environment interactions.

[1]  Jean-Christophe Comte,et al.  Whisking-Related Changes in Neuronal Firing and Membrane Potential Dynamics in the Somatosensory Thalamus of Awake Mice. , 2015, Cell reports.

[2]  Stephen V. David,et al.  Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection , 2015, Neuron.

[3]  Jonathan D. Cohen,et al.  Closed-loop training of attention with real-time brain imaging , 2015, Nature Neuroscience.

[4]  R. Mooney,et al.  A synaptic and circuit basis for corollary discharge in the auditory cortex , 2014, Nature.

[5]  Yuzhi Chen,et al.  Sensory stimulation shifts visual cortex from synchronous to asynchronous states , 2014, Nature.

[6]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[7]  Tom Froese,et al.  Embodied social interaction constitutes social cognition in pairs of humans: A minimalist virtual reality experiment , 2014, Scientific Reports.

[8]  Michael J. Goard,et al.  Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons , 2013, Nature Neuroscience.

[9]  A. E. Casale,et al.  Motor Cortex Feedback Influences Sensory Processing by Modulating Network State , 2013, Neuron.

[10]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[11]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[12]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[13]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[14]  J. Poulet,et al.  Thalamic control of cortical states , 2012, Nature Neuroscience.

[15]  Takeo Watanabe,et al.  Perceptual Learning Incepted by Decoded fMRI Neurofeedback Without Stimulus Presentation , 2011, Science.

[16]  Ziad M. Hafed,et al.  Modulation of Microsaccades in Monkey during a Covert Visual Attention Task , 2011, The Journal of Neuroscience.

[17]  Daniel N. Hill,et al.  Primary Motor Cortex Reports Efferent Control of Vibrissa Motion on Multiple Timescales , 2011, Neuron.

[18]  K. Harris,et al.  Cortical state and attention , 2011, Nature Reviews Neuroscience.

[19]  Yasuo Nagasaka,et al.  Multidimensional Recording (MDR) and Data Sharing: An Ecological Open Research and Educational Platform for Neuroscience , 2011, PloS one.

[20]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[21]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[22]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[23]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[24]  G. Tononi,et al.  Local sleep in awake rats , 2011, Nature.

[25]  Celine Mateo,et al.  Motor Control by Sensory Cortex , 2010, Science.

[26]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[27]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[28]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[29]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[30]  Michael J. Goard,et al.  Basal Forebrain Activation Enhances Cortical Coding of Natural Scenes , 2009, Nature Neuroscience.

[31]  K. Harris,et al.  A Simple Model of Cortical Dynamics Explains Variability and State Dependence of Sensory Responses in Urethane-Anesthetized Auditory Cortex , 2009, The Journal of Neuroscience.

[32]  S. N. Fry,et al.  Visual control of flight speed in Drosophila melanogaster , 2009, Journal of Experimental Biology.

[33]  Gonzalo H. Otazu,et al.  Engaging in an auditory task suppresses responses in auditory cortex , 2009, Nature Neuroscience.

[34]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[35]  Georg B. Keller,et al.  Neural processing of auditory feedback during vocal practice in a songbird , 2009, Nature.

[36]  D. Simons,et al.  Motor modulation of afferent somatosensory circuits , 2008, Nature Neuroscience.

[37]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[38]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[39]  M. Sommer,et al.  Corollary discharge across the animal kingdom , 2008, Nature Reviews Neuroscience.

[40]  Xiaoqin Wang,et al.  Neural substrates of vocalization feedback monitoring in primate auditory cortex , 2008, Nature.

[41]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[42]  David Kleinfeld,et al.  Active sensation: insights from the rodent vibrissa sensorimotor system , 2006, Current Opinion in Neurobiology.

[43]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[44]  Gidon Felsen,et al.  A natural approach to studying vision , 2005, Nature Neuroscience.

[45]  D. Kleinfeld,et al.  Positive Feedback in a Brainstem Tactile Sensorimotor Loop , 2005, Neuron.

[46]  S. Scott Optimal feedback control and the neural basis of volitional motor control , 2004, Nature Reviews Neuroscience.

[47]  M. Castro-Alamancos,et al.  Absence of Rapid Sensory Adaptation in Neocortex during Information Processing States , 2004, Neuron.

[48]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[49]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. , 2003, Journal of neurophysiology.

[50]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[51]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[52]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[53]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[54]  M. Deschenes,et al.  Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids , 2000, The Journal of Neuroscience.

[55]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[56]  Erika E. Fanselow,et al.  Behavioral Modulation of Tactile Responses in the Rat Somatosensory System , 1999, The Journal of Neuroscience.

[57]  D Kleinfeld,et al.  Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. , 1997, Journal of neurophysiology.

[58]  B. Gulyás,et al.  Activation by Attention of the Human Reticular Formation and Thalamic Intralaminar Nuclei , 1996, Science.

[59]  Andreas Voss,et al.  Can a fly ride a bicycle , 1992 .

[60]  M. Steriade,et al.  Brainstem Control of Wakefulness and Sleep , 1990, Springer US.

[61]  H. Akaike Factor analysis and AIC , 1987 .

[62]  B. Komisaruk,et al.  Neural substrates of two different rhythmical vibrissal movements in the rat , 1984, Neuroscience.

[63]  T. Lovick,et al.  The behavioural repertoire of precollicular decerebrate rats. , 1972, The Journal of physiology.

[64]  M. Ito,et al.  Neural design of the cerebellar motor control system. , 1972, Brain research.

[65]  E. Holst Relations between the central Nervous System and the peripheral organs , 1954 .

[66]  H. Berger Über das Elektrenkephalogramm des Menschen , 1938, Archiv für Psychiatrie und Nervenkrankheiten.

[67]  Mirko Farina Supersizing the Mind: Embodiment, Action and Cognitive Extension. , 2010 .

[68]  A. Clark Supersizing the Mind , 2008 .

[69]  David Kleinfeld,et al.  Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. , 2003, Cerebral cortex.

[70]  E. J. Morris,et al.  Visual motion processing and sensory-motor integration for smooth pursuit eye movements. , 1987, Annual review of neuroscience.

[71]  W. Welker Analysis of Sniffing of the Albino Rat 1) , 1964 .

[72]  Karl U. Smith Delayed sensory feedback and behavior , 1962 .