A Unified Approach to the Extremal Zagreb Indices for Trees, Unicyclic Graphs and Bicyclic Graphs 1

For a (molecular) graph, the first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. This paper presents a unified and simple approach to the largest and smallest Zagreb indices for trees, unicyclic graphs and bicyclic graphs by introducing some transformations, and characterize these graphs with the largest and smallest Zagreb indices, respectively.

[1]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .

[2]  Hanyuan Deng,et al.  Extremal (n,n + 1)-graphs with respected to zeroth- order general Randić index , 2007 .

[3]  I. Outman,et al.  Acyclic conjugated molecules, trees and their energies , 1987 .

[4]  Xueliang Li On a conjecture of Merrifield and Simmons , 1996, Australas. J Comb..

[5]  A. Kerber,et al.  SIMILARITY OF MOLECULAR DESCRIPTORS : THE EQUIVALENCE OF ZAGREB INDICES AND WALK COUNTS , 2004 .

[6]  Hanyuan Deng The smallest Hosoya index in (n, n + 1)-graphs , 2008 .

[7]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[8]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[9]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[10]  Helmut Prodinger,et al.  Fibonacci Numbers of Graphs: II , 1983, The Fibonacci Quarterly.

[11]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[12]  A. Balaban,et al.  Topological Indices for Structure-Activity Correlations , 1983, Steric Effects in Drug Design.

[13]  Preben D. Vestergaard,et al.  The number of independent sets in unicyclic graphs , 2005, Discret. Appl. Math..

[14]  Huiqing Liu,et al.  Sharp Bounds for the Second Zagreb Index of Unicyclic Graphs , 2007 .

[15]  Ivan Gutman GRAPHS WITH SMALLEST SUM OF SQUARES OF VERTEX DEGREES , 2003 .

[16]  Jie Zhang,et al.  The Merrifield–Simmons index in (n, n + 1)-graphs , 2008 .

[17]  Lusheng Wang,et al.  The Inverse Problems for Some Topological Indices in Combinatorial Chemistry , 2003, J. Comput. Biol..

[18]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[19]  Andrey A. Toropov,et al.  The graph of atomic orbitals and its basic properties. 2. Zagreb indices , 2005 .

[20]  Hanyuan Deng The largest Hosoya index of (n, n+1)-graphs , 2008, Comput. Math. Appl..

[21]  Nenad Trinajstić,et al.  On the discriminatory power of the Zagreb indices for molecular graphs , 2005 .