Deterministic Hardness Amplification via Local GMD Decoding

We study the average-case hardness of the class NP against deterministic polynomial time algorithms. We prove that there exists some constant μ > 0 such that if there is some language in NP for which no deterministic polynomial time algorithm can decide L correctly on a 1 − (log n) fraction of inputs of length n, then there is a language L in NP for which no deterministic polynomial time algorithm can decide L correctly on a 3/4+(logn) fraction of inputs of length n. In coding theoretic terms, we give a construction of a monotone code that can be uniquely decoded up to error rate 1 4 by a deterministic local decoder.

[1]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[2]  Venkatesan Guruswami,et al.  List decoding algorithms for certain concatenated codes , 2000, STOC '00.

[3]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[4]  Emanuele Viola,et al.  Using nondeterminism to amplify hardness , 2004, STOC '04.

[5]  Luca Trevisan,et al.  On worst-case to average-case reductions for NP problems , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[6]  Luca Trevisan,et al.  On uniform amplification of hardness in NP , 2005, STOC '05.

[7]  Luca Trevisan,et al.  Pseudorandom generators without the XOR Lemma , 1999, Electron. Colloquium Comput. Complex..

[8]  Luca Trevisan,et al.  List-decoding using the XOR lemma , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[9]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[10]  Venkatesan Guruswami,et al.  Linear-time encodable/decodable codes with near-optimal rate , 2005, IEEE Transactions on Information Theory.

[11]  Venkatesan Guruswami,et al.  Hardness Amplification Via Space-Efficient Direct Products , 2006, LATIN.

[12]  Avi Wigderson,et al.  Uniform direct product theorems: simplified, optimized, and derandomized , 2008, SIAM J. Comput..

[13]  Luca Trevisan,et al.  Pseudorandomness and average-case complexity via uniform reductions , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[14]  Rahul Santhanam,et al.  Uniform Hardness Amplification in NP via Monotone Codes , 2006, Electron. Colloquium Comput. Complex..

[15]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[16]  Venkatesan Guruswami,et al.  Expander-based constructions of efficiently decodable codes , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[17]  Noga Alon,et al.  Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.

[18]  Russell Impagliazzo,et al.  Approximately List-Decoding Direct Product Codes and Uniform Hardness Amplification , 2006, FOCS.

[19]  Noam Nisan,et al.  On Yao's XOR-Lemma , 1995, Electron. Colloquium Comput. Complex..

[20]  Noam Nisan,et al.  BPP has subexponential time simulations unlessEXPTIME has publishable proofs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[21]  Russell Impagliazzo,et al.  Hard-core distributions for somewhat hard problems , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[22]  Avi Wigderson,et al.  On Pseudorandomness with respect to Deterministic Observes , 2000, ICALP Satellite Workshops.

[23]  Avi Wigderson,et al.  Randomness vs. time: de-randomization under a uniform assumption , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[24]  Ryan O'Donnell,et al.  Hardness amplification within NP , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.