Geodetically Accurate InSAR Data Processor

We present a new interferometric synthetic aperture radar (InSAR) processing approach that capitalizes on the precise orbit tracking that is available with modern radar satellites. Our method uses an accurate orbit information along with motion-compensation techniques to propagate the radar echoes to positions along a noninertial virtual orbit frame in which the location and focusing equations are particularly simple, so that images are focused without requiring autofocus techniques and are computed efficiently. Motion compensation requires two additional focus correction phase terms that are implemented in the frequency domain. If the images from an interferometric pair or stack are all computed along the same reference orbit, flat-Earth topographic correction is not needed, and image coregistration is simplified, obviating many difficulties that are often encountered in InSAR processing. We process several data sets collected by the ALOS PALSAR instrument and find that the geodetic accuracy of the radar images is 10-20 m, with up to 20 m of additional image distortion needed to align 100 km × 100 km scenes with reference digital elevation models. We validated the accuracy by using both known radar corner reflector locations and by the registration of the interferograms with digital maps. The topography-corrected interferograms are free from all geometric phase terms, and they clearly show the geophysical observables of crustal deformation, atmospheric phase, and ionospheric phase.

[1]  Kenneth W. Hudnut,et al.  Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California , 1998 .

[2]  Howard A. Zebker,et al.  Persistent scatterer selection using maximum likelihood estimation , 2007 .

[3]  Oleksandr O. Bezvesilniy,et al.  Synthetic Aperture Radar Systems for Small Aircrafts: Data Processing Approaches , 2012 .

[4]  Howard A. Zebker,et al.  Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network , 2006 .

[5]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[7]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[8]  S. Buckley,et al.  Radar interferometry measurement of land subsidence , 2000 .

[9]  Paul Rosen,et al.  Postseismic Rebound in Fault Step-Overs Caused by Pore Fluid Flow , 1996, Science.

[10]  Lars M. H. Ulander,et al.  On the optimization of interferometric SAR for topographic mapping , 1993, IEEE Trans. Geosci. Remote. Sens..

[11]  P. Lacomme,et al.  Synthetic Aperture Radar , 2001 .

[12]  P. Rosen,et al.  On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Yousuke Yamamoto,et al.  Technology of Precise Orbit Determination , 2008 .

[14]  Ian R. Joughin,et al.  Interferometric estimation of three-dimensional ice-flow using ascending and descending passes , 1998, IEEE Trans. Geosci. Remote. Sens..

[15]  Precise ERS-2 orbit determination using SLR, PRARE, and RA observations , 1998 .

[16]  Fabio Rocca,et al.  Monitoring landslides and tectonic motions with the Permanent Scatterers Technique , 2003 .

[17]  H. Zebker,et al.  Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements , 2002 .

[18]  F. Casu,et al.  An Overview of the Small BAseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis , 2007 .

[19]  Søren Nørvang Madsen,et al.  Geometric calibration of ERS satellite SAR images , 2001, IEEE Trans. Geosci. Remote. Sens..

[20]  H. Zebker,et al.  High-Resolution Water Vapor Mapping from Interferometric Radar Measurements. , 1999, Science.

[21]  R. Goldstein,et al.  Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream , 1993, Science.

[22]  E. Weber Hoen,et al.  Penetration depths inferred from interferometric volume decorrelation observed over the Greenland Ice Sheet , 2000, IEEE Trans. Geosci. Remote. Sens..

[23]  David T. Sandwell,et al.  Topographic phase recovery from stacked ERS interferometry and a low‐resolution digital elevation model , 2000 .

[24]  P. Visser,et al.  Precise orbit determination and gravity field improvement for the ERS satellites , 1998 .

[25]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[26]  Howard A. Zebker,et al.  Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by Synthetic Aperture Radar Interferometry , 2001 .

[27]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[28]  Masanobu Shimada,et al.  Accuracy and Resolution of ALOS Interferometry: Vector Deformation Maps of the Father's Day Intrusion at Kilauea , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Eric Rignot,et al.  Ice flow dynamics of the Greenland Ice Sheet from SAR interferometry , 1995, Geophysical Research Letters.

[30]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[31]  D. Massonnet,et al.  Crustal deformation at Long Valley Caldera, eastern California, 1992–1996 inferred from satellite radar interferometry , 1997 .

[32]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[33]  Eric Rignot,et al.  Interferometric radar observations of Glaciares Europa and Penguin, Hielo Patagónico Sur, Chile , 1999, Journal of Glaciology.

[34]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, Remote Sensing.

[35]  Bob E. Schutz,et al.  Precision orbit determination for TOPEX/POSEIDON , 1994 .

[36]  James Foster,et al.  Mitigating atmospheric noise for InSAR using a high resolution weather model , 2005 .

[37]  H. Zebker,et al.  Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos , 2007 .

[38]  Thatcher,et al.  Migration of fluids beneath yellowstone caldera inferred from satellite radar interferometry , 1998, Science.

[39]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[40]  H. Zebker,et al.  Widespread uplift and ‘trapdoor’ faulting on Galápagos volcanoes observed with radar interferometry , 2000, Nature.

[41]  Fabio Rocca,et al.  Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis , 2004, Science.

[42]  David T. Sandwell,et al.  Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking , 2003 .

[43]  E. Rignot,et al.  Fast recession of a west antarctic glacier , 1998, Science.

[44]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[45]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Giorgio Franceschetti,et al.  X-SAR interferometry: first results , 1995, IEEE Trans. Geosci. Remote. Sens..

[47]  D. Alsdorf,et al.  Interferometric radar measurements of water level changes on the Amazon flood plain , 2000, Nature.

[48]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[49]  M. Simons,et al.  A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes , 2002, Nature.