Application of Adomian decomposition method and inverse solution for a fin with variable thermal conductivity and heat generation
暂无分享,去创建一个
[1] E. Jaynes. The well-posed problem , 1973 .
[2] G. Adomian. A review of the decomposition method in applied mathematics , 1988 .
[3] Peter J. Fleming,et al. The MATLAB genetic algorithm toolbox , 1995 .
[4] Cheng-Hung Huang,et al. Inverse problem of determining the unknown strength of an internal plane heat source , 1992 .
[5] K. Ooi,et al. A fin design employing an inverse approach using simplex search method , 2013 .
[6] Kim Tiow Ooi,et al. Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement , 2013 .
[7] Qiuwang Wang,et al. Application of a Genetic Algorithm for Thermal Design of Fin-and-Tube Heat Exchangers , 2008 .
[8] Haw Long Lee,et al. Inverse problem in determining convection heat transfer coefficient of an annular fin , 2007 .
[9] A. Aziz,et al. Application of perturbation techniques to heat-transfer problems with variable thermal properties , 1976 .
[10] Davood Domiri Ganji,et al. Application of variational iteration method and homotopy–perturbation method for nonlinear heat diffusion and heat transfer equations , 2007 .
[11] W. Lau,et al. Errors in One-Dimensional Heat Transfer Analysis in Straight and Annular Fins , 1973 .
[12] Win-Jin Chang,et al. Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions , 2012 .
[13] Cha'o-Kuang Chen,et al. A decomposition method for solving the convective longitudinal fins with variable thermal conductivity , 2002 .
[14] Ranjan Das,et al. Application of genetic algorithm for unknown parameter estimations in cylindrical fin , 2012, Appl. Soft Comput..
[15] Reza Ansari,et al. Homotopy Analysis Method for a Fin with Temperature Dependent Internal Heat Generation and Thermal Conductivity , 2012 .
[16] J. V. Beck,et al. Parameter Estimation Method for Flash Thermal Diffusivity with Two Different Heat Transfer Coefficients , 1995 .
[17] D. Ganji,et al. Analytical and numerical investigation of fin efficiency and temperature distribution of conductive, convective, and radiative straight fins , 2011 .
[18] Daniel Lesnic,et al. Analysis of polygonal fins using the boundary element method , 2004 .
[19] D. Ingham,et al. Parameter identification in Helmholtz-type equations with a variable coefficient using a regularized DRBEM , 2006 .
[20] M. Bouaziz,et al. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity , 2011 .
[21] Cheng-Hung Huang,et al. A transient 3-D inverse problem in imaging the time-dependent local heat transfer coefficients for plate fin , 2005 .
[22] Esmail Babolian,et al. New method for calculating Adomian polynomials , 2004, Appl. Math. Comput..
[23] D. Ganji,et al. Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity , 2009 .
[24] Subhash C. Mishra,et al. Multiparameter Estimation in a Transient Conduction-Radiation Problem Using the Lattice Boltzmann Method and the Finite-Volume Method Coupled with the Genetic Algorithms , 2008 .
[25] D. Ingham,et al. PARAMETER IDENTIFICATION IN TWO-DIMENSIONAL FINS USING THE BOUNDARY ELEMENT METHOD , 2006 .
[26] Shengwei Wang,et al. Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm , 2006 .
[27] R. Das,et al. A simplex search method for a conductive–convective fin with variable conductivity , 2011 .
[28] Rama Subba Reddy Gorla,et al. Thermal analysis of natural convection and radiation in porous fins , 2011 .
[29] Abdul-Majid Wazwaz,et al. A reliable modification of Adomian decomposition method , 1999, Appl. Math. Comput..
[30] Kenneth DeJong. Evolutionary computation: a unified approach , 2007, GECCO.
[31] D. P. Sekulic,et al. Extended surface heat transfer , 1972 .
[32] Abdul-Majid Wazwaz,et al. A new algorithm for calculating adomian polynomials for nonlinear operators , 2000, Appl. Math. Comput..
[33] Ranjan Das,et al. Application of simulated annealing in a rectangular fin with variable heat transfer coefficient , 2013 .
[34] S. Baek,et al. Efficient inverse radiation analysis in a cylindrical geometry using a combined method of hybrid genetic algorithm and finite-difference Newton method , 2007 .