Application of Adomian decomposition method and inverse solution for a fin with variable thermal conductivity and heat generation

Abstract In this work, our aim is to demonstrate the application of the Adomian decomposition method (ADM) to solve a non linear heat transfer problem for a rectangular fin with temperature dependent internal heat generation and thermal conductivity. Next, for satisfying a prescribed temperature field, inverse predictions of the internal heat generation and the condition responsible for insulated boundary (represented by a constant) were done using ADM alongwith the genetic algorithm (GA). For obtaining the required temperature field, a forward problem is solved using ADM, where Newton–Raphson method is used for estimating the relevant constant representing the fin tip temperature. It is found from the present study that with accurate temperature data, even for different runs of GA, estimation of two unknowns remain nearly unique. The investigation has been done for various searching range of GA, and different number of temperature measurement points. It is finally observed that for correct reconstruction of the temperature field, an accurate measurement of the temperature field is found to be necessary.

[1]  E. Jaynes The well-posed problem , 1973 .

[2]  G. Adomian A review of the decomposition method in applied mathematics , 1988 .

[3]  Peter J. Fleming,et al.  The MATLAB genetic algorithm toolbox , 1995 .

[4]  Cheng-Hung Huang,et al.  Inverse problem of determining the unknown strength of an internal plane heat source , 1992 .

[5]  K. Ooi,et al.  A fin design employing an inverse approach using simplex search method , 2013 .

[6]  Kim Tiow Ooi,et al.  Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement , 2013 .

[7]  Qiuwang Wang,et al.  Application of a Genetic Algorithm for Thermal Design of Fin-and-Tube Heat Exchangers , 2008 .

[8]  Haw Long Lee,et al.  Inverse problem in determining convection heat transfer coefficient of an annular fin , 2007 .

[9]  A. Aziz,et al.  Application of perturbation techniques to heat-transfer problems with variable thermal properties , 1976 .

[10]  Davood Domiri Ganji,et al.  Application of variational iteration method and homotopy–perturbation method for nonlinear heat diffusion and heat transfer equations , 2007 .

[11]  W. Lau,et al.  Errors in One-Dimensional Heat Transfer Analysis in Straight and Annular Fins , 1973 .

[12]  Win-Jin Chang,et al.  Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions , 2012 .

[13]  Cha'o-Kuang Chen,et al.  A decomposition method for solving the convective longitudinal fins with variable thermal conductivity , 2002 .

[14]  Ranjan Das,et al.  Application of genetic algorithm for unknown parameter estimations in cylindrical fin , 2012, Appl. Soft Comput..

[15]  Reza Ansari,et al.  Homotopy Analysis Method for a Fin with Temperature Dependent Internal Heat Generation and Thermal Conductivity , 2012 .

[16]  J. V. Beck,et al.  Parameter Estimation Method for Flash Thermal Diffusivity with Two Different Heat Transfer Coefficients , 1995 .

[17]  D. Ganji,et al.  Analytical and numerical investigation of fin efficiency and temperature distribution of conductive, convective, and radiative straight fins , 2011 .

[18]  Daniel Lesnic,et al.  Analysis of polygonal fins using the boundary element method , 2004 .

[19]  D. Ingham,et al.  Parameter identification in Helmholtz-type equations with a variable coefficient using a regularized DRBEM , 2006 .

[20]  M. Bouaziz,et al.  A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity , 2011 .

[21]  Cheng-Hung Huang,et al.  A transient 3-D inverse problem in imaging the time-dependent local heat transfer coefficients for plate fin , 2005 .

[22]  Esmail Babolian,et al.  New method for calculating Adomian polynomials , 2004, Appl. Math. Comput..

[23]  D. Ganji,et al.  Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity , 2009 .

[24]  Subhash C. Mishra,et al.  Multiparameter Estimation in a Transient Conduction-Radiation Problem Using the Lattice Boltzmann Method and the Finite-Volume Method Coupled with the Genetic Algorithms , 2008 .

[25]  D. Ingham,et al.  PARAMETER IDENTIFICATION IN TWO-DIMENSIONAL FINS USING THE BOUNDARY ELEMENT METHOD , 2006 .

[26]  Shengwei Wang,et al.  Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm , 2006 .

[27]  R. Das,et al.  A simplex search method for a conductive–convective fin with variable conductivity , 2011 .

[28]  Rama Subba Reddy Gorla,et al.  Thermal analysis of natural convection and radiation in porous fins , 2011 .

[29]  Abdul-Majid Wazwaz,et al.  A reliable modification of Adomian decomposition method , 1999, Appl. Math. Comput..

[30]  Kenneth DeJong Evolutionary computation: a unified approach , 2007, GECCO.

[31]  D. P. Sekulic,et al.  Extended surface heat transfer , 1972 .

[32]  Abdul-Majid Wazwaz,et al.  A new algorithm for calculating adomian polynomials for nonlinear operators , 2000, Appl. Math. Comput..

[33]  Ranjan Das,et al.  Application of simulated annealing in a rectangular fin with variable heat transfer coefficient , 2013 .

[34]  S. Baek,et al.  Efficient inverse radiation analysis in a cylindrical geometry using a combined method of hybrid genetic algorithm and finite-difference Newton method , 2007 .