First description of the Cro-Magnon 1 endocast and study of brain variation and evolution in anatomically modern Homo sapiens

Paleoneurology is an important research field for studies of human evolution. Variations in the size and shape of the endocranium are a useful means of distinguishing between different hominin species, while brain asymmetry is related to behaviour and cognitive capacities. The evolution of the hominin brain is well documented and substantial literature has been produced on this topic, mostly from studies of endocranial casts, or endocasts. However, we have only little information about variations in endocranial form, size and shape in fossil anatomically modern Homo sapiens (AMH) and about the evolution of the brain since the emergence of our species. One good illustration of this limited knowledge is that one of the first fossil H. sapiens discovered, in 1868, that is also one of the oldest well-preserved European specimen has never been studied in what concerns its endocranial morphology. The first aim of this study was to propose a detailed description of the endocranial anatomy of Cro-Magnon 1, using imaging methodologies, including an original methodology to quantify endocranial asymmetries. The second aim was to compare samples of the fossil and extant AMH in order to document differences in the form, size and shape of the endocasts. A decrease in absolute endocranial size since the Upper Palaeolithic was noticeable. Although both extant and older endocrania have the same anatomical layout, we nonetheless found non-allometric differences in the relative size and organization of different parts of the brain. These document previously unknown intraspecific anatomical variations in the H. sapiens brain, demonstrating its plasticity, with some areas (frontal and occipital lobes) having been more subject to variation than others (parietal, temporal or cerebellar lobes). That may be due to constraints to maintain an optimal performance while reducing in size and changing in shape during our recent evolution.RésuméLa paléoneurologie est un champ de recherche important dans le cadre des études sur l’évolution humaine. Les variations de taille et de forme de l’endocrâne sont en effet utiles pour différencier les différentes espèces d’homininés, alors que les asymétries cérébrales sont reliées au comportement et aux capacités cognitives. Pourtant, notre connaissance de l’évolution et de la variation du cerveau d’Homo sapiens, depuis l’apparition de notre espèce, est très lacunaire. Dans un premier temps, nous détaillons l’anatomie et les asymétries (en proposant une méthode innovante de quantification de ces dernières) de l’endocrâne de Cro-Magnon 1, un des représentants européens les mieux conservés et les plus anciens des Hommes anatomiquement modernes, qui n’avait encore pu être analysé. Puis, une étude comparative entre un échantillon de spécimens fossiles et actuels d’Homo sapiens est effectuée. Bien qu’un substrat anatomique commun soit présent, certaines différences de taille et d’organisation ont été observées entre ces deux échantillons. Ces résultats illustrent la plasticité du cerveau au sein de notre espèce et documentent une variabilité anatomique encore inconnue.

[1]  B. Wood,et al.  The hominin fossil record and the emergence of the modern human central nervous system , 2007 .

[2]  P. Storm The evolutionary significance of the Wajak skulls , 1995 .

[3]  Richard J. Smith Use and misuse of the reduced major axis for line-fitting. , 2009, American journal of physical anthropology.

[4]  R. Holloway, The Indonesian Homo erectus Brain Endocasts Revisited , 1981 .

[5]  C. Blanckaert Les « trois glorieuses de 1859 » [Broca, Boucher de Perthes, Darwin] et la genèse du concept de races historiques , 2010, Bulletins et mémoires de la Société d'anthropologie de Paris.

[6]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[7]  C. Ramsey,et al.  An early modern human from the Peştera cu Oase, Romania , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Jacob,et al.  Internal cranial features of the Mojokerto child fossil (East Java, Indonesia). , 2005, Journal of human evolution.

[9]  L. Lartet Une sépulture des troglodytes du Périgord (crânes des Eyzies) , 2018, Bulletins et Mémoires de la Société d'Anthropologie de Paris.

[10]  R. L. Miller,et al.  Statistical Analysis in the Geological Sciences. , 1963 .

[11]  Andrew Kertesz,et al.  Cerebral Asymmetries on Magnetic Resonance Imaging , 1986, Cortex.

[12]  Andrew Kertesz,et al.  Sex, handedness, and the morphometry of cerebral asymmetries on magnetic resonance imaging , 1990, Brain Research.

[13]  W. Hopkins,et al.  Asymmetries in cerebral width in nonhuman primate brains as revealed by magnetic resonance imaging (MRI) , 2000, Neuropsychologia.

[14]  S. D. Glick Cerebral Lateralization in Nonhuman Species , 2012 .

[15]  A. Balzeau,et al.  Cranial base morphology and temporal bone pneumatization in Asian Homo erectus. , 2006, Journal of human evolution.

[16]  S. Antón,et al.  Artificial cranial deformation and fossil Australians revisited. , 1999, Journal of human evolution.

[17]  W. Hopkins,et al.  Cerebral volumetric asymmetries in non-human primates: A magnetic resonance imaging study , 2001, Laterality.

[18]  I. Tattersall,et al.  Fossil evidence for the origin of Homo sapiens. , 2010, American journal of physical anthropology.

[19]  Robert R. Sokal,et al.  Significance Tests for Coefficients of Variation and Variability Profiles , 1980 .

[20]  Marjorie LeMay,et al.  Asymmetries of the skull and handedness: Phrenology revisited , 1977, Journal of the Neurological Sciences.

[21]  A. Tillier La pneumatisation du massif cranio-facial chez les hommes actuels et fossiles (suite) , 1977 .

[22]  J. Comas H. V. VALLIOIS ET G. BILLY. Nouvelles recherches sur les hommes fossiles de l'Abri de Cro-Magnon , 2010 .

[23]  M. Henneberg EVOLUTION OF THE HUMAN BRAIN: IS BIGGER BETTER? , 1998, Clinical and experimental pharmacology & physiology.

[24]  A W Toga,et al.  Maps of the Brain , 2001, The Anatomical record.

[25]  A. Balzeau Spécificités des caractères morphologiques internes du squelette céphalique chez Homo erectus , 2005 .

[26]  R. Holloway, Volumetric and asymmetry determinations on recent hominid endocasts: Spy I and II, Djebel Ihroud I, and the Sale Homo erectus specimens, with some notes on Neanderthal brain size. , 1981, American journal of physical anthropology.

[27]  A. Balzeau,et al.  LA MORPHOLOGIE EXTERNE ET INTERNE DE LA RÉGION SUPRA-ORBITAIRE EST-ELLE CORRÉLÉE À DES CONTRAINTES BIOMÉCANIQUES ? IS THE INTERNALAND EXTERNAL MORPHOLOGY OF THE SUPRAORBITALAREA RELATED TO BIOMECHANICAL STRESS? STRUCTURALANALYSIS OF THE AFALOU BOU RHUMMEL (ALGERIA) AND TAFORALT (MOROCCO) POPULATIONS , 2005 .

[28]  D. Kido,et al.  Asymmetries of the cerebral hemispheres on computed tomograms. , 1978, Journal of computer assisted tomography.

[29]  Antoine Balzeau,et al.  Shared Pattern of Endocranial Shape Asymmetries among Great Apes, Anatomically Modern Humans, and Fossil Hominins , 2012, PloS one.

[30]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[31]  J. Zilhão,et al.  Peştera cu Oase 2 and the cranial morphology of early modern Europeans , 2007, Proceedings of the National Academy of Sciences.

[32]  R. Holloway,,et al.  Variations and asymmetries in regional brain surface in the genus Homo. , 2012, Journal of human evolution.

[33]  J. Cheverud,et al.  Cortical asymmetries in frontal lobes of Rhesus monkeys (Macaca mulatta) , 1990, Brain Research.

[34]  N. Geschwind,et al.  Asymmetries of the Brains and Skulls of Nonhuman Primates , 1982 .

[35]  F. Détroit Origine et évolution des Homo sapiens en Asie du Sud-Est : descriptions et analyses morphométriques de nouveaux fossiles , 2002 .

[36]  Neil Roberts,et al.  Automatic symmetry plane estimation of bilateral objects in point clouds , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  B. Chovitz,et al.  Statistical analysis in the geological sciences , 1964 .

[38]  A. Palmer Fluctuating asymmetry analyses: a primer , 1994 .

[39]  L. Pales Paléopathologie et pathologie comparative , 1930 .

[40]  Sylvain Prima,et al.  An Efficient EM-ICP Algorithm for Symmetric Consistent Non-linear Registration of Point Sets , 2010, MICCAI.

[41]  P. Gunz,et al.  Cioclovina (Romania): affinities of an early modern European. , 2007, Journal of human evolution.

[42]  A. Froment,et al.  Modern human cranial diversity in the Late Pleistocene of Africa and Eurasia: evidence from Nazlet Khater, Peştera cu Oase, and Hofmeyr. , 2009, American journal of physical anthropology.

[43]  J. Comas Dastugue, J. Pathologie des hommes fossiles de l'Abri de Cro-Magnon , 2011 .

[44]  Ralph L. Holloway,et al.  The Human Fossil Record , 2004 .

[45]  Antoine Balzeau,et al.  Where are inion and endinion? Variations of the exo- and endocranial morphology of the occipital bone during hominin evolution. , 2011, Journal of human evolution.

[46]  J. Cheverud,et al.  Heritability and association of cortical petalias in rhesus macaques (Macaca mulatta). , 1990, Brain, behavior and evolution.

[47]  R. Sokal,et al.  Brain Size, Cranial Morphology, Climate, and Time Machines [and Comments and Reply] , 1984, Current Anthropology.

[48]  Marjorie LeMay,et al.  MORPHOLOGICAL CEREBRAL ASYMMETRIES OF MODERN MAN, FOSSIL MAN, AND NONHUMAN PRIMATE , 1976, Annals of the New York Academy of Sciences.

[49]  D. Geschwind,et al.  Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  P. Broca Sur les crânes et ossements des Eyzies , 2018, Bulletins et Mémoires de la Société d'Anthropologie de Paris.

[51]  L. Radinsky Primate brain evolution. , 1982 .

[52]  K. Harvati,et al.  Virtual Assessment of the Endocranial Morphology of the Early Modern European Fossil Calvaria From Cioclovina, Romania , 2011, Anatomical record.

[53]  Ralph L. Holloway,et al.  The Human Brain Evolving: A Personal Retrospective , 2008 .

[54]  N. Geschwind,et al.  Right-left asymmetrics in the brain. , 1978, Science.

[55]  J. Fleagle,et al.  Stratigraphic placement and age of modern humans from Kibish, Ethiopia , 2005, Nature.

[56]  R. Schmitz,et al.  New Insights Into Mid‐Late Pleistocene Fossil Hominin Paranasal Sinus Morphology , 2008, Anatomical record.

[57]  Dominique Grimaud-Hervé L'évolution de l'encéphale chez l'Homo erectus et l'Homo sapiens , 1991 .

[58]  P. Tobias The brain of Homo habilis: A new level of organization in cerebral evolution☆ , 1987 .

[59]  D. Lieberman,et al.  Craniodental variation in Paranthropus boisei: a developmental and functional perspective. , 2001, American journal of physical anthropology.

[60]  T. White,et al.  Pleistocene Homo sapiens from Middle Awash, Ethiopia , 2003, Nature.

[61]  E. Gilissen,et al.  Applications of imaging methodologies to paleoanthropology: Beneficial results relating to the preservation, management and development of collections , 2010 .

[62]  Xiujie Wu,et al.  The brain morphology of Homo Liujiang cranium fossil by three-dimensional computed tomography , 2008 .

[63]  T. Markow,et al.  Developmental Instability: Its Origins and Evolutionary Implications , 1994, Contemporary Issues in Genetics and Evolution.

[64]  T. Jacob,et al.  Structures crâniennes internes de l'Homo erectus Sambungmacan 1 (Java, Indonésie)Internal cranial structures of the Sambungmacan 1Homo erectus (Java, Indonesia). , 2002 .

[65]  E. Gilissen,et al.  Internal cranial anatomy of the type specimen of Pan paniscus and available data for study. , 2009, Journal of human evolution.

[66]  E. Cabanis,et al.  Multi-detector row CT scanning in Paleoanthropology at various tube current settings and scanning mode , 2005, Surgical and Radiologic Anatomy.

[67]  R. Holloway,,et al.  Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. , 1982, American journal of physical anthropology.

[68]  D. Henry-Gambier Les fossiles de Cro-Magnon (Les Eyzies-de-Tayac, Dordogne) : nouvelles données sur leur position chronologique et leur attribution culturelle , 2002 .

[69]  D. Cain,et al.  An anatomical asymmetry in the baboon brain. , 1979, Brain, behavior and evolution.

[70]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[71]  K. Kupczik,et al.  Shaping the human face , 2006 .

[72]  J. Radovčić,et al.  Variation and modalities of growth and development of the temporal bone pneumatization in Neandertals. , 2008, Journal of human evolution.