Bioengineered embryoids mimic post-implantation development in vitro

[1]  J. Briscoe,et al.  Sox2 levels configure the WNT response of epiblast progenitors responsible for vertebrate body formation , 2020, bioRxiv.

[2]  Jianping Fu,et al.  Stem-cell-based embryo models for fundamental research and translation , 2020, Nature Materials.

[3]  Matthew Miyamoto,et al.  Capturing Cardiogenesis in Gastruloids. , 2020, Cell stem cell.

[4]  M. Lutolf,et al.  Gastruloids generated without exogenous Wnt activation develop anterior neural tissues , 2020, bioRxiv.

[5]  Matthias P. Lutolf,et al.  High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays , 2020, Nature Biomedical Engineering.

[6]  A. Meissner,et al.  Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites , 2020, Science.

[7]  A. van Oudenaarden,et al.  Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids , 2020, Nature.

[8]  S. Tans,et al.  Extraembryonic endoderm cells induce neuroepithelial tissue in gastruloids , 2020, bioRxiv.

[9]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[10]  Jennifer L Hu,et al.  MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices , 2019, Nature Methods.

[11]  Berthold Göttgens,et al.  A single-cell molecular map of mouse gastrulation and early organogenesis , 2019, Nature.

[12]  Jinzhu Xiang,et al.  Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells , 2019, Nature Communications.

[13]  S. Ramanathan,et al.  Mouse embryo geometry drives formation of robust signaling gradients through receptor localization , 2019, Nature Communications.

[14]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[15]  James Briscoe,et al.  Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord , 2018, Development.

[16]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[17]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[18]  Leonardo Beccari,et al.  Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids , 2018, Nature.

[19]  Jonathan S. Weissman,et al.  MULTI-seq: Scalable sample multiplexing for single-cell RNA sequencing using lipid-tagged indices , 2018, bioRxiv.

[20]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[21]  M. Zernicka-Goetz,et al.  Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures , 2018, Nature Cell Biology.

[22]  A. Oudenaarden,et al.  Blastocyst-like structures generated solely from stem cells , 2018, Nature.

[23]  M. Hemberg,et al.  scmap: projection of single-cell RNA-seq data across data sets , 2018, Nature Methods.

[24]  E. Siggia,et al.  Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning , 2018, eLife.

[25]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[26]  Alfonso Martinez Arias,et al.  Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids , 2017, Development.

[27]  R. Krumlauf,et al.  Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates , 2017, Wiley interdisciplinary reviews. Developmental biology.

[28]  W. Tao,et al.  Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos , 2017, Developmental dynamics : an official publication of the American Association of Anatomists.

[29]  K. Downs,et al.  STELLA collaborates in distinct mesendodermal cell subpopulations at the fetal-placental interface in the mouse gastrula. , 2017, Developmental biology.

[30]  Christos Kyprianou,et al.  Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro , 2017, Science.

[31]  S. Manley,et al.  A role for mitotic bookmarking of SOX2 in pluripotency and differentiation , 2016, Genes & development.

[32]  A. Brivanlou,et al.  A Balance between Secreted Inhibitors and Edge Sensing Controls Gastruloid Self-Organization. , 2016, Developmental cell.

[33]  M. Hemberger,et al.  From the stem of the placental tree: trophoblast stem cells and their progeny , 2016, Development.

[34]  David W. Nauen,et al.  Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure , 2016, Cell.

[35]  Sarah W. Burge,et al.  Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry-sensitive shifts in target gene networks , 2015, Genes & development.

[36]  Guojun Sheng Epiblast morphogenesis before gastrulation. , 2015, Developmental biology.

[37]  A. Hadjantonakis,et al.  The Dynamics of Morphogenesis in the Early Mouse Embryo. , 2015, Cold Spring Harbor perspectives in biology.

[38]  Sonja Nowotschin,et al.  Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells , 2014, Development.

[39]  Y. Ohinata,et al.  Establishment of Trophoblast Stem Cells under Defined Culture Conditions in Mice , 2014, PloS one.

[40]  J. Klingensmith,et al.  BMP antagonism by Noggin is required in presumptive notochord cells for mammalian foregut morphogenesis. , 2014, Developmental biology.

[41]  Eric D. Siggia,et al.  A method to recapitulate early embryonic spatial patterning in human embryonic stem cells , 2014, Nature Methods.

[42]  Magdalena Zernicka-Goetz,et al.  Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation , 2014, Cell.

[43]  M. Araúzo-Bravo,et al.  Derivation and Maintenance of Murine Trophoblast Stem Cells under Defined Conditions , 2014, Stem cell reports.

[44]  J. Rossant,et al.  Location of transient ectodermal progenitor potential in mouse development , 2013, Development.

[45]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[46]  B. Merrill,et al.  Tcf7l1 prepares epiblast cells in the gastrulating mouse embryo for lineage specification , 2013, Development.

[47]  R. Dasgupta,et al.  A membrane-associated β-catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells , 2013, Development.

[48]  P. Serup,et al.  Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice , 2012, Disease Models & Mechanisms.

[49]  A. Camus,et al.  Clonal and molecular analysis of the prospective anterior neural boundary in the mouse embryo , 2012, Development.

[50]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[51]  T. Adachi,et al.  Self-organizing optic-cup morphogenesis in three-dimensional culture , 2011, Nature.

[52]  Daniel W. Stuckey,et al.  Correct Patterning of the Primitive Streak Requires the Anterior Visceral Endoderm , 2011, PloS one.

[53]  A. Hadjantonakis,et al.  A sensitive and bright single-cell resolution live imaging reporter of Wnt/ß-catenin signaling in the mouse , 2010, BMC Developmental Biology.

[54]  A. Hadjantonakis,et al.  Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo , 2010, Cell adhesion & migration.

[55]  Janet Rossant,et al.  Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse , 2009, Development.

[56]  R. Nusse,et al.  Wnt signaling mediates self-organization and axis formation in embryoid bodies. , 2008, Cell stem cell.

[57]  James Briscoe,et al.  Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network , 2008, Development.

[58]  P. Khoo,et al.  Dkk1 and Wnt3 interact to control head morphogenesis in the mouse , 2008, Development.

[59]  Ariel J. Levine,et al.  Proposal of a model of mammalian neural induction. , 2007, Developmental biology.

[60]  D. Constam,et al.  The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. , 2006, Developmental cell.

[61]  R. Beddington,et al.  Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm , 2005, Development.

[62]  P. Pfeffer,et al.  Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning , 2005, Development.

[63]  D. Constam,et al.  Nodal protein processing and fibroblast growth factor 4 synergize to maintain a trophoblast stem cell microenvironment. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  S. Dupont,et al.  Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Constam,et al.  Extraembryonic proteases regulate Nodal signalling during gastrulation , 2002, Nature Cell Biology.

[66]  R. Behringer,et al.  Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. , 2002, Developmental cell.

[67]  J. I. Izpisúa Belmonte,et al.  Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. , 2001, Developmental cell.

[68]  Carmen Birchmeier,et al.  Requirement for beta-catenin in anterior-posterior axis formation in mice. , 2000 .

[69]  J. Rossant,et al.  Promotion of trophoblast stem cell proliferation by FGF4. , 1998, Science.

[70]  B. Hogan,et al.  Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. , 1995, Genes & development.