A reassessment of electron escape depths in silicon and thermally grown silicon dioxide thin films

Abstract The escape depths of electrons with kinetic energies of approximately 1150 and 1380 eV in Si and thermally grown SiO 2 thin films have been calculated, using three methods, from X-ray photoelectron spectra of samples which have been characterized by high resolution transmission electron microscopy (HRTEM). The most reliable and reproducible escape depths derived in this study are significantly less than the average of those reported in the literature. It is believed that this is due principally to inaccurate characterization of the samples previously used for escape depths measurements.

[1]  J. Finster,et al.  Studies of the Si/SiO2 interface by angular dependent X‐ray photoelectron spectroscopy , 1981 .

[2]  T. Hattori,et al.  Si‐SiO2 interface structures on Si(100), (111), and (110) surfaces , 1983 .

[3]  G. Mcguire,et al.  Study of the x-ray photoelectron spectrum of tungsten—tungsten oxide as a function of thickness of the surface oxide layer , 1972 .

[4]  Y. Kamigaki,et al.  SiSiO2 interface characterization by ESCA , 1979 .

[5]  D. R. Penn,et al.  Electron mean-free-path calculations using a model dielectric function. , 1987, Physical review. B, Condensed matter.

[6]  F. Grunthaner,et al.  Intensity analysis of XPS spectra to determine oxide uniformity: Application to SiO2/Si interfaces☆ , 1980 .

[7]  H. Kanter ELECTRON MEAN FREE PATH NEAR 2 keV IN ALUMINUM , 1970 .

[8]  Robert Sinclair,et al.  The preparation of cross‐section specimens for transmission electron microscopy , 1984 .

[9]  C. Nordling,et al.  Electron escape depth in silicon , 1974 .

[10]  D. R. Penn,et al.  Proposed formula for electron inelastic mean free paths based on calculations for 31 materials , 1987 .

[11]  Franz J. Himpsel,et al.  Probing the transition layer at the SiO2‐Si interface using core level photoemission , 1984 .

[12]  W. F. Egelhoff X-ray photoelectron and Auger-electron forward scattering: A new tool for studying epitaxial growth and core-level binding-energy shifts , 1984 .

[13]  J. D. Scott,et al.  The determination of the photoelectron escape depths in polymers and other materials , 1978 .

[14]  F. Grunthaner,et al.  Properties of oxidized silicon as determined by angular-dependent X-ray photoelectron spectroscopy , 1976 .

[15]  S. I. Raider,et al.  X-ray photoelectron spectroscopy of SiO 2 -Si interfacial regions: ultrathin oxide films , 1978 .

[16]  M. Trzhaskovskaya,et al.  Relative intensities in x-ray photoelectron spectra , 1973 .

[17]  R. Sinclair,et al.  The Evolution of Si / SiO2 Interface Roughness , 1987 .

[18]  T. Hattori,et al.  Studies of SiO2 and SiSiO2 interfaces by XPS , 1979 .

[19]  P. Pianetta,et al.  Electron-spectroscopic studies of the early stages of the oxidation of Si , 1979 .

[20]  S. I. Raider,et al.  Electron mean escape depths from x−ray photoelectron spectra of thermally oxidized silicon dioxide films on silicon , 1975 .

[21]  S. Iwata,et al.  Si‐SiO2 interface characterization from angular dependence of x‐ray photoelectron spectra , 1980 .

[22]  C. Nordling,et al.  Determination of the electron escape depth in gold by means of ESCA , 1970 .

[23]  J. Ganachaud,et al.  Quantitative Auger Electron Spectroscopy , 1983 .

[24]  R. Sinclair,et al.  High-resolution electron microscopy of structural features at the interface , 1987 .