Quantum information and computation

In information processing, as in physics, our classical world view provides an incomplete approximation to an underlying quantum reality. Quantum effects like interference and entanglement play no direct role in conventional information processing, but they can—in principle now, but probably eventually in practice—be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  L. Rosenfeld,et al.  Theory of electrons , 1951 .

[3]  S. Haroche,et al.  Experiments with single atoms in a cabity: entanglement, Schrödinger's cats and decoherence , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  A. Holevo Problems in the mathematical theory of quantum communication channels , 1977 .

[5]  R. Griffiths,et al.  OPTIMAL EAVESDROPPING IN QUANTUM CRYPTOGRAPHY. II. A QUANTUM CIRCUIT , 1997, quant-ph/9702015.

[6]  Christopher A. Fuchs,et al.  Quantum Foundations in the Light of Quantum Information , 2001 .

[7]  W. Dur,et al.  Quantum repeaters for communication , 1998 .

[8]  Guifre Vidal Entanglement monotones , 1998, quant-ph/9807077.

[9]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[11]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[12]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[13]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.

[14]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[15]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[16]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[17]  Schumacher,et al.  Limitation on the amount of accessible information in a quantum channel. , 1996, Physical review letters.

[18]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[20]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[21]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  Caslav Brukner,et al.  Quantum Measurement and Shannon Information, A Reply to M. J. W. Hall , 2000 .

[23]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[24]  Jeffrey Bub Secure Key Distribution via Pre-and Post-Selected Quantum Ensembles , 2000 .

[25]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[26]  S. J. Summers On the Independence of Local Algebras in Quantum Field Theory , 1990 .

[27]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[28]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[29]  Jeffrey Bub,et al.  Interpreting the Quantum World , 1997 .

[30]  Amr F. Fahmy,et al.  Ensemble Quantum Computing by Nuclear Magnetic Resonance Spectroscopy , 1997 .

[31]  A. Sudbery,et al.  Non-local properties of multi-particle density matrices , 1998, quant-ph/9801076.

[32]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[33]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[34]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  L. J. Landau,et al.  On the violation of Bell's inequality in quantum theory , 1987 .

[36]  Howard Barnum,et al.  On the reversible extraction of classical information from a quantum source , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[38]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[39]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[40]  R. Hughes,et al.  The Structure and Interpretation of Quantum Mechanics , 1989 .

[41]  L. Loeb Autobiographical Notes , 2015, Perspectives in biology and medicine.

[42]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[43]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[44]  M. Izutsu,et al.  Quantum channels showing superadditivity in classical capacity , 1998, quant-ph/9801012.

[45]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  H. Mabuchi,et al.  Real-time detection of individual atoms falling through a high-finesse optical cavity. , 1996, Optics letters.

[47]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[48]  Caslav Brukner,et al.  Information and Fundamental Elements of the Structure of Quantum Theory , 2002, quant-ph/0212084.

[49]  I. Pitowsky,et al.  Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability , 2002, quant-ph/0208121.

[50]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[51]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[52]  Christopher A. Fuchs Information Gain vs. State Disturbance in Quantum Theory , 1996 .

[53]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[54]  S. Wiesner Simulations of Many-Body Quantum Systems by a Quantum Computer , 1996, quant-ph/9603028.

[55]  N. Gisin,et al.  “Plug and play” systems for quantum cryptography , 1996, quant-ph/9611042.

[56]  H. Briegel,et al.  Quantum computing via measurements only , 2000, quant-ph/0010033.

[57]  James T. Cushing,et al.  Philosophical concepts in physics , 1998 .

[58]  E. Knill,et al.  Complete quantum teleportation using nuclear magnetic resonance , 1998, Nature.

[59]  D. Mayers The Trouble with Quantum Bit Commitment , 1996, quant-ph/9603015.

[60]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[61]  Yuri Ozhigov Quantum Computer Can Not Speed Up Iterated Applications of a Black Box , 1998, QCQC.

[62]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[63]  A. Zeilinger,et al.  Conceptual inadequacy of the Shannon information in quantum measurements , 2000, quant-ph/0006087.

[64]  J. Bub Secure Key Distribution via Pre- and Post-Selected Quantum States , 2000, quant-ph/0006086.

[65]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[66]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[67]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[68]  D. Raine General relativity , 1980, Nature.

[69]  Barbara M. Terhal,et al.  Quantum Algorithms and Quantum Entanglement , 1999 .

[70]  N. Gisin,et al.  Optimal Eavesdropping in Quantum Cryptography. I , 1997, quant-ph/9701039.

[71]  E. Biham,et al.  Security of Quantum Cryptography against Collective Attacks , 1996, quant-ph/9605007.

[72]  David P. DiVincenzo,et al.  Towards an engineering era? , 1995, Nature.

[73]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[74]  P. Zoller,et al.  Quantum communication with dark photons , 1998, quant-ph/9805003.

[75]  M. Mosca,et al.  APPROXIMATE QUANTUM COUNTING ON AN NMR ENSEMBLE QUANTUM COMPUTER , 1999 .

[76]  Christopher A. Fuchs The Anti-Vaxjo Interpretation of Quantum Mechanics , 2002 .

[77]  R. Feynman Simulating physics with computers , 1999 .

[78]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[79]  Richard Jozsa,et al.  QUANTUM INFORMATION AND ITS PROPERTIES , 1998 .

[80]  Raymond Laflamme,et al.  NMR Greenberger–Horne–Zeilinger states , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[81]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[82]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[83]  Adrian Kent,et al.  Unconditionally Secure Bit Commitment , 1998, quant-ph/9810068.

[84]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[85]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[86]  J. A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[87]  C. Helstrom Quantum detection and estimation theory , 1969 .

[88]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[89]  R. Jozsa Entanglement and Quantum Computation , 1997, quant-ph/9707034.

[90]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[91]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[92]  Ashish V. Thapliyal Multipartite pure-state entanglement , 1998 .

[93]  Julia Kempe,et al.  Multiparticle entanglement and its applications to cryptography , 1999 .

[94]  Gilles Brassard,et al.  Quantum Cryptography, or Unforgeable Subway Tokens , 1982, CRYPTO.

[95]  Francis Medforth Denton,et al.  Relativity and common sense , 1924 .

[96]  C. Fuchs Nonorthogonal Quantum States Maximize Classical Information Capacity , 1997, quant-ph/9703043.

[97]  Jeffrey Bub,et al.  A uniqueness theorem for ‘no collapse’ interpretations of quantum mechanics , 1996 .

[98]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[99]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[100]  John McCarthy,et al.  Mathematical Theory of Computation , 1991 .

[101]  M. Sipser,et al.  Limit on the Speed of Quantum Computation in Determining Parity , 1998, quant-ph/9802045.

[102]  J. Paz,et al.  Course 8: Environment-Induced Decoherence and the Transition from Quantum to Classical , 2000, quant-ph/0010011.

[103]  R. Jozsa Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[104]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[105]  Jozsa,et al.  General fidelity limit for quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[106]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[107]  Hideo Mabuchi,et al.  Quantum state transfer in a quantum network: A quantum-optical implementation , 1997 .

[108]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[109]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[110]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[111]  D. DiVincenzo,et al.  Quantum information is physical , 1997, cond-mat/9710259.

[112]  Andrew Chi-Chih Yao,et al.  Quantum bit escrow , 2000, STOC '00.

[113]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[114]  G. Vidal On the characterization of entanglement , 1998 .

[115]  Sandu Popescu,et al.  The joy of entanglement , 1998 .

[116]  A. S. Holevo,et al.  Capacity of a quantum communication channel , 1979 .

[117]  David Deutsch Quantum theory of probability and decisions , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[118]  S. Lloyd Envisioning a quantum supercomputer. , 1994, Science.

[119]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[120]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[121]  W. H. Furry Note on the Quantum-Mechanical Theory of Measurement , 1936 .

[122]  N. B. Freeman An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.

[123]  Jeroen van de Graaf,et al.  Security of Quantum Key Distribution against All Collective Attacks , 2002, Algorithmica.

[124]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[125]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[126]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[127]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[128]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[129]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[130]  C. S. Wood,et al.  Deterministic Entanglement of Two Trapped Ions , 1998 .

[131]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[132]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[133]  C. Fuchs Just Two Nonorthogonal Quantum States , 1998, quant-ph/9810032.

[134]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[135]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[136]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[137]  H. Nyquist,et al.  Certain factors affecting telegraph speed , 1924, Journal of the A.I.E.E..

[138]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[139]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[140]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[141]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[142]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.