Although LSO is one of the most successful scintillator developments for medical diagnostics in the last two decades, good single crystals are not commercially available in any quantity. Consequently, we explored the feasibility of developing a ceramic version of the material, which requires a considerably lower temperature to consolidate the material to essentially crystalline density. Consolidation of the ceramic was achieved by hot pressing at temperatures up to 1700degC and pressure of 8000 psi. Hot pressing causes a loss of oxygen resulting in strong coloration of the ceramic, which had to be removed by heating (ldquobleachingrdquo) in air at approximately 1100degC. The resultant specimens were colorless and highly translucent, but the anisotropic nature of the crystal structure precluded the achievement of full transparency. The scintillation performance of the resulting ceramics was characterized and compared with that of high light-output LSO single crystals. The scintillation efficiency as measured by energy spectra generally fell in the range of 50-60% of that of the crystals. While this would be adequate for PET applications, the limited transparency provides a barrier to such use. An alternative application would be in signal integrating techniques, such as CT, where it could provide an alternative to GOS but with higher speed. Here, the problem of afterglow assumes major importance. The afterglow is a function of many factors, including conditions of excitation. Further work on improving the LSO ceramics is considered.
[1]
R. Nutt,et al.
Advances in the scintillation performance of LSO:Ce single crystals
,
2002,
2002 IEEE Nuclear Science Symposium Conference Record.
[2]
A. Wojtowicz,et al.
Luminescence properties of Ce-activated YAG optical ceramic scintillator materials
,
1997
.
[3]
H. Suzuki,et al.
Light emission mechanism of Lu/sub 2/(SiO/sub 4/)O:Ce
,
1992,
IEEE Conference on Nuclear Science Symposium and Medical Imaging.
[4]
A. Lempicki,et al.
Ce-doped scintillators: LSO and LuAP
,
1998
.
[5]
Charles L. Melcher,et al.
Light emission mechanism of Lu/sub 2/(SiO/sub 4/)O:Ce
,
1992
.
[6]
Rolf Apetz,et al.
Transparent Alumina: A Light‐Scattering Model
,
2003
.