The Divisible Sandpile at Critical Density

[1]  Xin Sun,et al.  Uniform Spanning Forests and the bi-Laplacian Gaussian field , 2013, 1312.0059.

[2]  J. Norris Appendix: probability and measure , 1997 .

[3]  V. Climenhaga Markov chains and mixing times , 2013 .

[4]  Charles K. Smart,et al.  Apollonian structure in the Abelian sandpile , 2012, 1208.4839.

[5]  Parkpoom Phetpradap,et al.  Intersections of random walks , 2011 .

[6]  Lionel Levine,et al.  Internal DLA in Higher Dimensions , 2010 .

[7]  Lionel Levine,et al.  Scaling limits for internal aggregation models with multiple sources , 2007, 0712.3378.

[8]  Y. Peres,et al.  Growth Rates and Explosions in Sandpiles , 2009, 0901.3805.

[9]  Y. Peres,et al.  Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile , 2007, 0704.0688.

[10]  R. Meester,et al.  Stabilizability and percolation in the infinite volume sandpile model , 2007, 0710.0939.

[11]  S. Mendelson,et al.  A probabilistic approach to the geometry of the ℓᵨⁿ-ball , 2005, math/0503650.

[12]  R. Meester,et al.  Connections between 'self-organised' and 'classical' criticality , 2005 .

[13]  M. Talagrand The Generic chaining : upper and lower bounds of stochastic processes , 2005 .

[14]  A. Fey,et al.  Organized versus self-organized criticality in the abelian sandpile model , 2005, math-ph/0510060.

[15]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[16]  Laurent Saloff-Coste,et al.  GAUSSIAN ESTIMATES FOR MARKOV CHAINS AND RANDOM WALKS ON GROUPS , 1993 .

[17]  R. Schonmann On the Behavior of Some Cellular Automata Related to Bootstrap Percolation , 1992 .

[18]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[19]  Dhar,et al.  Self-organized critical state of sandpile automaton models. , 1990, Physical review letters.

[20]  A. Enter Proof of Straley's argument for bootstrap percolation , 1987 .

[21]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .