Model Selection by Bootstrap Penalization for Classification
暂无分享,去创建一个
[1] Albert Y. Lo,et al. A large sample study of the Bayesian bootstrap , 1987 .
[2] D. Pollard. A central limit theorem for empirical processes , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[3] Peter L. Bartlett,et al. Localized Rademacher Complexities , 2002, COLT.
[4] E. Giné,et al. Bootstrapping General Empirical Measures , 1990 .
[5] P. Massart,et al. Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .
[6] Colin McDiarmid,et al. Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .
[7] S. Boucheron,et al. Theory of classification : a survey of some recent advances , 2005 .
[8] M. Fromont. Quelques problèmes de sélection de modèles : construction de tests adaptatifs, ajustement de pénalités par des méthodes de bootstrap , 2003 .
[9] P. R. Kumar,et al. Learning by canonical smooth estimation. II. Learning and choice of model complexity , 1996, IEEE Trans. Autom. Control..
[10] P. R. Kumar,et al. Learning by canonical smooth estimation. I. Simultaneous estimation , 1996, IEEE Trans. Autom. Control..
[11] V. Vapnik. Estimation of Dependences Based on Empirical Data , 2006 .
[12] V. Koltchinskii,et al. Rademacher Processes and Bounding the Risk of Function Learning , 2004, math/0405338.
[13] L. Devroye. Bounds for the Uniform Deviation of Empirical Measures , 1982 .
[14] E. Giné,et al. Some Limit Theorems for Empirical Processes , 1984 .
[15] J. Wellner,et al. Exchangeably Weighted Bootstraps of the General Empirical Process , 1993 .
[16] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[17] G. Lugosi,et al. Adaptive Model Selection Using Empirical Complexities , 1998 .
[18] A. Tsybakov,et al. Optimal aggregation of classifiers in statistical learning , 2003 .
[19] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[20] P. Massart,et al. A uniform Marcinkiewicz-Zygmund strong law of large numbers for empirical processes , 1998 .
[21] P. Massart. Some applications of concentration inequalities to statistics , 2000 .
[22] David Haussler,et al. Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.
[23] Kazuoki Azuma. WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .
[24] B. Efron. The jackknife, the bootstrap, and other resampling plans , 1987 .
[25] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[26] E. Mammen,et al. Smooth Discrimination Analysis , 1999 .
[27] Gábor Lugosi,et al. Concept learning using complexity regularization , 1995, IEEE Trans. Inf. Theory.
[28] D. Rubin. The Bayesian Bootstrap , 1981 .
[29] S. Boucheron,et al. A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.
[30] G. Lugosi,et al. Complexity regularization via localized random penalties , 2004, math/0410091.
[31] Andrew R. Barron,et al. Minimum complexity density estimation , 1991, IEEE Trans. Inf. Theory.
[32] C. Weng,et al. On a Second-Order Asymptotic Property of the Bayesian Bootstrap Mean , 1989 .
[33] Luc Devroye,et al. Lower bounds in pattern recognition and learning , 1995, Pattern Recognit..
[34] Vladimir Koltchinskii,et al. Rademacher penalties and structural risk minimization , 2001, IEEE Trans. Inf. Theory.
[35] Peter L. Bartlett,et al. Model Selection and Error Estimation , 2000, Machine Learning.
[36] Norbert Sauer,et al. On the Density of Families of Sets , 1972, J. Comb. Theory A.
[37] Gábor Lugosi,et al. Pattern Classification and Learning Theory , 2002 .
[38] Émilie Lebarbier,et al. Quelques approches pour la détection de ruptures à horizon fini , 2002 .
[39] Peter L. Bartlett,et al. Local Complexities for Empirical Risk Minimization , 2004, COLT.