First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets

[1]  E. Cremades,et al.  Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy , 2014, Nature Communications.

[2]  P. García-Fernández,et al.  Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni(II) complexes with potential molecular magnet behavior , 2014 .

[3]  Nathalie Guihéry,et al.  Magnetic interactions in molecules and highly correlated materials: physical content, analytical derivation, and rigorous extraction of magnetic Hamiltonians. , 2014, Chemical reviews.

[4]  W. Wernsdorfer,et al.  Field-induced hysteresis and quantum tunneling of the magnetization in a mononuclear manganese(III) complex. , 2013, Angewandte Chemie.

[5]  A. Auer,et al.  Tensor decomposition in post-Hartree-Fock methods. II. CCD implementation. , 2013, The Journal of chemical physics.

[6]  Frank Neese,et al.  Mössbauer spectroscopy as a probe of magnetization dynamics in the linear iron(I) and iron(II) complexes [Fe(C(SiMe3)3)2](1-/0.). , 2013, Inorganic chemistry.

[7]  N. Guihéry,et al.  Theoretical determination of spin Hamiltonians with isotropic and anisotropic magnetic interactions in transition metal and lanthanide complexes. , 2013, Physical chemistry chemical physics : PCCP.

[8]  F. Neese,et al.  Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies. , 2013, Journal of chemical theory and computation.

[9]  Frank Neese,et al.  Magnetic blocking in a linear iron(I) complex. , 2013, Nature chemistry.

[10]  F. Neese,et al.  Electronic structures of octahedral Ni(II) complexes with "click" derived triazole ligands: a combined structural, magnetometric, spectroscopic, and theoretical study. , 2013, Inorganic chemistry.

[11]  W. Hackbusch,et al.  Tensor representation techniques in post-Hartree–Fock methods: matrix product state tensor format , 2013 .

[12]  E. Cremades,et al.  Mononuclear single-molecule magnets: tailoring the magnetic anisotropy of first-row transition-metal complexes. , 2013, Journal of the American Chemical Society.

[13]  F. Neese,et al.  A fully variational spin-orbit coupled complete active space self-consistent field approach: application to electron paramagnetic resonance g-tensors. , 2013, The Journal of chemical physics.

[14]  Joseph M. Zadrozny,et al.  Slow magnetization dynamics in a series of two-coordinate iron(II) complexes , 2013 .

[15]  Roland Lindh,et al.  MOLCAS—a software for multiconfigurational quantum chemistry calculations , 2013 .

[16]  N. Guihéry,et al.  Giant Ising-type magnetic anisotropy in trigonal bipyramidal Ni(II) complexes: experiment and theory. , 2013, Journal of the American Chemical Society.

[17]  Garnet Kin-Lic Chan,et al.  Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm. , 2013, The Journal of chemical physics.

[18]  F. Neese,et al.  A combined high-field EPR and quantum chemical study on a weakly ferromagnetically coupled dinuclear Mn(III) complex. A complete analysis of the EPR spectrum beyond the strong coupling limit. , 2013, Physical chemistry chemical physics : PCCP.

[19]  Frank Neese,et al.  All-electron scalar relativistic basis sets for the 6p elements , 2012, Theoretical Chemistry Accounts.

[20]  Alexander M. Whyte,et al.  Investigating magnetostructural correlations in the pseudooctahedral trans-[Ni(II){(OPPh2)(EPPh2)N}2(sol)2] complexes (E = S, Se; sol = DMF, THF) by magnetometry, HFEPR, and ab initio quantum chemistry. , 2012, Inorganic chemistry.

[21]  J. Telser,et al.  Simple ligand-field theory of d4 and d6 transition metal complexes with a C3 symmetry axis. , 2012, Inorganic chemistry.

[22]  Garnet Kin-Lic Chan,et al.  Spin-adapted density matrix renormalization group algorithms for quantum chemistry. , 2012, The Journal of chemical physics.

[23]  K. Hirao,et al.  The Douglas-Kroll-Hess approach. , 2012, Chemical reviews.

[24]  Trond Saue,et al.  Relativistic Hamiltonians for chemistry: a primer. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Joseph M. Zadrozny,et al.  Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2-. , 2011, Journal of the American Chemical Society.

[26]  F. Neese,et al.  Theoretical analysis of the spin Hamiltonian parameters in Co(II)S4 complexes, using density functional theory and correlated ab initio methods. , 2011, Inorganic chemistry.

[27]  D. Pantazis,et al.  Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes. , 2011, Inorganic chemistry.

[28]  J. Malrieu,et al.  Physical analysis of the through-ligand long-distance magnetic coupling: spin-polarization versus Anderson mechanism. , 2011, Physical chemistry chemical physics : PCCP.

[29]  J. Killingbeck,et al.  Development of a general time-dependent absorbing potential for the constrained adiabatic trajectory method. , 2011, The Journal of chemical physics.

[30]  F. Neese,et al.  Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The (Cu2O2)(2+) Core Revisited. , 2011, Journal of chemical theory and computation.

[31]  E. Cremades,et al.  Mononuclear Fe(II) single-molecule magnets: a theoretical approach. , 2011, Inorganic chemistry.

[32]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for the Actinides , 2011 .

[33]  Wolfgang Hackbusch,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Tensor Decomposition in Post-hartree Fock Methods. I. Two-electron Integrals and Mp2 , 2022 .

[34]  Frank Neese,et al.  Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods? , 2011, Journal of chemical theory and computation.

[35]  J. Long,et al.  Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. , 2010, Journal of the American Chemical Society.

[36]  C. de Graaf,et al.  Antisymmetric Magnetic Interactions in Oxo-Bridged Copper(II) Bimetallic Systems. , 2010, Journal of chemical theory and computation.

[37]  F. Neese,et al.  Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. , 2010, The journal of physical chemistry. A.

[38]  C. de Graaf,et al.  Magnetostructural relations from a combined ab initio and ligand field analysis for the nonintuitive zero-field splitting in Mn(III) complexes. , 2010, The Journal of chemical physics.

[39]  F. Neese,et al.  Tetrahedral and square planar Ni[(SPR(2))(2)N](2) complexes, R = Ph & (i)Pr revisited: experimental and theoretical analysis of interconversion pathways, structural preferences, and spin delocalization. , 2010, Inorganic chemistry.

[40]  F. Neese,et al.  Family of V(III)-tristhiolato complexes relevant to functional models of vanadium nitrogenase: synthesis and electronic structure investigations by means of high-frequency and -field electron paramagnetic resonance coupled to quantum chemical computations. , 2010, Inorganic chemistry.

[41]  N. Guihéry,et al.  Rigorous Extraction of the Anisotropic Multispin Hamiltonian in Bimetallic Complexes from the Exact Electronic Hamiltonian. , 2010, Journal of chemical theory and computation.

[42]  Christopher J. Chang,et al.  Slow magnetic relaxation in a high-spin iron(II) complex. , 2010, Journal of the American Chemical Society.

[43]  F. Neese,et al.  A multiconfigurational ab initio study of the zero-field splitting in the di- and trivalent hexaquo-chromium complexes. , 2009, Inorganic chemistry.

[44]  N. Guihéry,et al.  Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians. , 2009, Journal of chemical theory and computation.

[45]  Michael T. Mock,et al.  A high-spin organometallic Fe-S compound: structural and Mössbauer spectroscopic studies of [phenyltris((tert-butylthio)methyl)borate]Fe(Me). , 2009, Inorganic chemistry.

[46]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for the Lanthanides. , 2009, Journal of chemical theory and computation.

[47]  Celestino Angeli,et al.  Analysis of the magnetic coupling in binuclear systems. III. The role of the ligand to metal charge transfer excitations revisited. , 2009, The Journal of chemical physics.

[48]  F. Neese,et al.  Multireference ab initio studies of zero-field splitting and magnetic circular dichroism spectra of tetrahedral Co(II) complexes. , 2009, Dalton transactions.

[49]  Frank Neese,et al.  How to build molecules with large magnetic anisotropy. , 2009, Chemistry.

[50]  A. Talarico,et al.  Magnetic memory of a single-molecule quantum magnet wired to a gold surface. , 2009, Nature materials.

[51]  Roland Lindh,et al.  New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.

[52]  F. Neese,et al.  Ab initio and coupled-perturbed density functional theory estimation of zero-field splittings in MnII transition metal complexes. , 2008, The journal of physical chemistry. A.

[53]  F. Neese,et al.  Electronic structure and spectroscopy of "superoxidized" iron centers in model systems: theoretical and experimental trends. , 2008, Physical chemistry chemical physics : PCCP.

[54]  P. Stamp,et al.  Spin-based quantum computers made by chemistry: hows and whys , 2008, 0807.1986.

[55]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. , 2008, Journal of chemical theory and computation.

[56]  T. Mitra,et al.  Quantum oscillations in a molecular magnet , 2008, Nature.

[57]  F. Neese,et al.  A systematic density functional study of the zero-field splitting in Mn(II) coordination compounds. , 2008, Inorganic chemistry.

[58]  Debashree Ghosh,et al.  Orbital optimization in the density matrix renormalization group, with applications to polyenes and beta-carotene. , 2007, The Journal of chemical physics.

[59]  Christopher J. Chang,et al.  N2O activation and oxidation reactivity from a non-heme iron pyrrole platform. , 2007, Journal of the American Chemical Society.

[60]  O. Waldmann A criterion for the anisotropy barrier in single-molecule magnets. , 2007, Inorganic chemistry.

[61]  Frank Neese,et al.  Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory. , 2007, The Journal of chemical physics.

[62]  F. Neese Analytic derivative calculation of electronic g-tensors based on multireference configuration interaction wavefunctions , 2007 .

[63]  F. Neese,et al.  Origin of the zero-field splitting in mononuclear octahedral dihalide MnII complexes: an investigation by multifrequency high-field electron paramagnetic resonance and density functional theory. , 2007, Inorganic chemistry.

[64]  K. Dyall,et al.  Introduction to Relativistic Quantum Chemistry , 2007 .

[65]  W. Wernsdorfer,et al.  A record anisotropy barrier for a single-molecule magnet. , 2007, Journal of the American Chemical Society.

[66]  Hélène Bolvin,et al.  Theoretical determination of the excited states and of g-factors of the Creutz-Taube ion, [(NH3)5-Ru-pyrazine-Ru-(NH3)5]5+. , 2007, Inorganic chemistry.

[67]  John A. Weil,et al.  Electron Paramagnetic Resonance , 2006 .

[68]  S. Blundell,et al.  Will spin-relaxation times in molecular magnets permit quantum information processing? , 2006, Physical review letters.

[69]  Y. Greenberg Low-frequency Rabi spectroscopy of dissipative two-level systems: Dressed-state approach , 2006, cond-mat/0609144.

[70]  W. Wernsdorfer,et al.  A ferromagnetically coupled mn(19) aggregate with a record S=83/2 ground spin state. , 2006, Angewandte Chemie.

[71]  Frank Neese,et al.  First-principles calculations of zero-field splitting parameters. , 2006, The Journal of chemical physics.

[72]  F. Neese Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. , 2006, Journal of the American Chemical Society.

[73]  W. Wernsdorfer,et al.  The properties of the [Mn12O12(O2CR)16(H2O)4] single-molecule magnets in truly axial symmetry: [Mn12O12(O2CCH2Br)16(H2O)4].4CH2Cl2. , 2006, Journal of the American Chemical Society.

[74]  Celestino Angeli,et al.  Third-order multireference perturbation theory: the n-electron valence state perturbation-theory approach. , 2006, The Journal of chemical physics.

[75]  G. Aromí,et al.  Synthesis of 3d metallic single-molecule magnets , 2006 .

[76]  Markus Reiher,et al.  Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry , 2006 .

[77]  Roland Lindh,et al.  New relativistic ANO basis sets for transition metal atoms. , 2005, The journal of physical chemistry. A.

[78]  B. Roos,et al.  New relativistic ANO basis sets for actinide atoms , 2005 .

[79]  Frank Neese,et al.  Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry: a QM/MM study of its EPR and Mössbauer parameters. , 2005, Journal of the American Chemical Society.

[80]  D. Loss,et al.  Phonon Bottleneck Effect Leads to Observation of Quantum Tunneling of the Magnetization and Butterfly Hysteresis Loops in (Et4N)3Fe2F9 , 2005, cond-mat/0502548.

[81]  Frank Neese,et al.  Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. , 2005, The Journal of chemical physics.

[82]  B. Roos,et al.  A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2) , 2004 .

[83]  E. L. Bominaar,et al.  Theoretical analysis of the three-dimensional structure of tetrathiolato iron complexes. , 2004, Inorganic chemistry.

[84]  B. Roos,et al.  Relativistic quantum chemistry: the multiconfigurational approach , 2004 .

[85]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[86]  B. Roos,et al.  Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers , 2004 .

[87]  Garnet Kin-Lic Chan,et al.  An algorithm for large scale density matrix renormalization group calculations. , 2004, The Journal of chemical physics.

[88]  F. Neese Correlated ab initio calculation of electronic g-tensors using a sum over states formulation , 2003 .

[89]  Frank Neese,et al.  A spectroscopy oriented configuration interaction procedure , 2003 .

[90]  H. Bolvin From ab Initio Calculations to Model Hamiltonians: The Effective Hamiltonian Technique as an Efficient Tool to Describe Mixed-Valence Molecules , 2003 .

[91]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[92]  E. L. Bominaar,et al.  Mössbauer study of reduced rubredoxin as purified and in whole cells. Structural correlation analysis of spin Hamiltonian parameters. , 2002, Inorganic chemistry.

[93]  R. Cimiraglia,et al.  n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants , 2002 .

[94]  W. Wernsdorfer,et al.  Quantum tunneling of magnetization in a new [Mn18]2+ single-molecule magnet with s = 13. , 2002, Journal of the American Chemical Society.

[95]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[96]  Celestino Angeli,et al.  N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant , 2001 .

[97]  Joel S. Miller,et al.  Magnetism: Molecules to Materials V , 2001 .

[98]  B. Schimmelpfennig,et al.  Spin-orbit coupling within a two-component density functional theory approach: Theory, implementation and first applications , 2001 .

[99]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[100]  B. Rufflé,et al.  Inelastic Neutron Scattering and Magnetic Susceptibilities of the Single-Molecule Magnets [Mn4O3X(OAc)3(dbm)3] (X = Br, Cl, OAc, and F): Variation of the Anisotropy along the Series , 2000 .

[101]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[102]  D. Loss,et al.  Spin tunneling and phonon-assisted relaxation in Mn₁₂-acetate , 1999, cond-mat/9907154.

[103]  L. Visscher,et al.  ON THE DISTINCTION BETWEEN SCALAR AND SPIN-ORBIT RELATIVISTIC EFFECTS , 1999 .

[104]  Frank Neese,et al.  MCD C-Term Signs, Saturation Behavior, and Determination of Band Polarizations in Randomly Oriented Systems with Spin S >/= (1)/(2). Applications to S = (1)/(2) and S = (5)/(2). , 1999, Inorganic chemistry.

[105]  F. Neese,et al.  Calculation of Zero-Field Splittings, g-Values, and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High-Spin Ferric Complexes. , 1998, Inorganic chemistry.

[106]  Michael W. Schmidt,et al.  Effective Nuclear Charges for the First- through Third-Row Transition Metal Elements in Spin−Orbit Calculations , 1998 .

[107]  S. Wang,et al.  Density functional study of first row transition metal dihalides , 1998 .

[108]  D. Loss,et al.  Spin relaxation in Mn12-acetate , 1998, cond-mat/9810156.

[109]  Luis Serrano-Andrés,et al.  The multi-state CASPT2 method , 1998 .

[110]  N. Dilley,et al.  RESONANT MAGNETIZATION TUNNELING IN THE TRIGONAL PYRAMIDAL MNIVMNIII3 COMPLEX MN4O3CL(O2CCH3)3(DBM)3 , 1998 .

[111]  H. Fagerli,et al.  On the combination of ECP-based CI calculations with all-electron spin-orbit mean-field integrals , 1998 .

[112]  S. L. Castro,et al.  Single-Molecule Magnets: Tetranuclear Vanadium(III) Complexes with a Butterfly Structure and an S ) 3 Ground State , 1998 .

[113]  E. Chudnovsky,et al.  Thermally activated resonant magnetization tunneling in molecular magnets: Mn 12 Ac and others , 1997, cond-mat/9805057.

[114]  C. Sangregorio,et al.  QUANTUM TUNNELING OF THE MAGNETIZATION IN AN IRON CLUSTER NANOMAGNET , 1997 .

[115]  N. Rösch,et al.  The Douglas-Kroll-Hess Approach to Relativistic Density Functional Theory: Methodological Aspects and Applications to Metal Complexes and Clusters , 1996 .

[116]  D. Adams,et al.  Distorted MnIVMnIII3 Cubane Complexes as Single-Molecule Magnets , 1996 .

[117]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[118]  U. Wahlgren,et al.  A new mean-field and ECP-based spin-orbit method. Applications to Pt and PtH , 1996 .

[119]  Björn O. Roos,et al.  Multiconfigurational perturbation theory with level shift — the Cr2 potential revisited , 1995 .

[120]  H. Masuda,et al.  Effects of CoS torsion angle variation in a cobalt(II)-thiolate complex: X-ray crystal structure analysis, single-crystal EPR measurements and ligand-field calculations , 1995 .

[121]  Michael W. Schmidt,et al.  Main Group Effective Nuclear Charges for Spin-Orbit Calculations , 1995 .

[122]  Kenneth G. Dyall,et al.  The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function , 1995 .

[123]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[124]  J. Villain,et al.  Magnetic Relaxation in Big Magnetic Molecules , 1994 .

[125]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[126]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[127]  J. Bendix,et al.  Accurate empirical spin-orbit coupling parameters .zeta.nd for gaseous ndq transition metal ions. The parametrical multiplet term model , 1993 .

[128]  Mark S. Gordon,et al.  MCSCF/6-31 G(d,p) Calculations of One-Electron Spin-Orbit Coupling Constants In Diatomic Molecules , 1992 .

[129]  N. Kojima,et al.  Metal-thiolate bonding properties: single-crystal ESR, susceptibility, and polarized absorption evidence for a strong .pi. interaction in tetrakis(thiophenolato)cobaltate(II) , 1992 .

[130]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[131]  N. Hirota,et al.  ESR and Magnetic Susceptibility Studies on High-Spin Tetrahedral Cobalt(II)–Thiolate Complexes: An Approach to Rubredoxin-Type Active Sites , 1991 .

[132]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[133]  Dante Gatteschi,et al.  Electron Paramagnetic Resonance of Exchange Coupled Systems , 1990 .

[134]  M. Hendrich,et al.  Integer-spin electron paramagnetic resonance of iron proteins. , 1989, Biophysical journal.

[135]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[136]  Björn O. Roos,et al.  The CASSCF state interaction method , 1989 .

[137]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[138]  Ph. Durand,et al.  Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory , 1986 .

[139]  R. Woolley The sum rule for the angular overlap model e-parameters , 1985 .

[140]  K. Blum Density Matrix Theory and Applications , 1981 .

[141]  J. Malrieu,et al.  Ab initio direct calculation of the singlet-triplet separation in cupric acetate hydrate dimer , 1981 .

[142]  R. Woolley The angular overlap model in ligand field theory , 1981 .

[143]  P. Gütlich,et al.  Mössbauer Spectroscopy and Transition Metal Chemistry , 1978 .

[144]  Per E. M. Siegbahn,et al.  The direct configuration interaction method with a contracted configuration expansion , 1977 .

[145]  C. Winscom,et al.  Electron spin resonance and electronic structures of vanadyl bis(maleonitriledithiolene) and vanadium tris(maleonitriledithiolene) , 1973 .

[146]  T. I. Quickenden,et al.  Magnetochemistry in SI units , 1972 .

[147]  R. E. Watson,et al.  Theory of spin-orbit coupling in atoms I. Derivation of the spin-orbit coupling constant , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[148]  J. Griffith,et al.  The Theory of Transition-Metal Ions , 1962 .

[149]  J. V. Vleck Paramagnetic Relaxation Times for Titanium and Chrome Alum , 1940 .

[150]  Frank Neese,et al.  A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior , 2013 .

[151]  Frank Neese,et al.  The ORCA program system , 2012 .

[152]  M. Reiher Relativistic Douglas–Kroll–Hess theory , 2012 .

[153]  D. Pantazis,et al.  What is not required to make a single molecule magnet. , 2011, Faraday discussions.

[154]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[155]  Notker Rösch,et al.  Quantum chemistry with the Douglas-Kroll-Hess approach to relativistic density functional theory: Efficient methods for molecules and materials , 2004 .

[156]  F. Lloret,et al.  Hexanuclear manganese(III) single-molecule magnets. , 2004, Angewandte Chemie.

[157]  Gunnar Jeschke,et al.  Principles of pulse electron paramagnetic resonance , 2001 .

[158]  D. Gatteschi,et al.  Magneto-structural correlations in exchange coupled systems , 1984 .

[159]  John H. Harding,et al.  The context and application of ligand field theory , 1981 .

[160]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[161]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[162]  J. Griffith Some investigations in the theory of open-shell ions: Part I. The spin-Hamiltonian , 1960 .

[163]  M. Pryce A Modified Perturbation Procedure for a Problem in Paramagnetism , 1950 .