Efficient fabrication methodology of wide angle black silicon for energy harvesting applications

In this paper, we report an easy and relatively cost effective fabrication technique of a wide band omnidirectional antireflective black silicon surface based on silicon nanowires (SiNWs). An effective and economical one step silver electroless catalytic etching method in an aqueous solution of AgNO3 and HF is used for the synthesis of the black silicon surface. The formation mechanism for SiNW arrays is explained in terms of a localized nanoelectrochemical cell. The length and diameter of the nanowires were controllable as we found a commensurate relationship between dimensions and the etching time. Different sample sizes were used to prove the technique's large scale production potential. Wide range near zero reflection is reported in the visible region due to the strong trapping and antireflective properties in addition to a wide angle up to ±60°. Raman scattering measurements confirmed the quantum size effect and phonon scattering in the fabricated structure with different diameters. A black silicon surface based on solid and porous SiNWs shows promising potential for photovoltaic, optoelectronic and energy storage applications.

[1]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[2]  Lih-Juann Chen,et al.  Silicon nanowires: the key building block for future electronic devices , 2007 .

[3]  Jinguang Cai,et al.  Recent advances in antireflective surfaces based on nanostructure arrays , 2015 .

[4]  Shu‐Lin Zhang,et al.  Raman spectral study of silicon nanowires , 1999 .

[5]  Yingfeng Li,et al.  A one-step template-free approach to achieve tapered silicon nanowire arrays with controllable filling ratios for solar cell applications , 2014 .

[6]  Madhu Menon,et al.  Thermal conductivity in thin silicon nanowires: phonon confinement effect. , 2007, Nano letters.

[7]  N. Ravindra,et al.  Optical Properties of Black Silicon: An Analysis , 2015 .

[8]  V. Naumann,et al.  Black Silicon Photovoltaics , 2015 .

[9]  S. T. Lee,et al.  Fabrication of Single‐Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles , 2006 .

[10]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[11]  Yun Jeong Hwang,et al.  Single crystalline mesoporous silicon nanowires. , 2009, Nano letters.

[12]  Optical Interference Filters Made of Porous Silicon , 1996 .

[13]  P. Eklund,et al.  Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires , 2006 .

[14]  Yong Qing Fu,et al.  Deep reactive ion etching as a tool for nanostructure fabrication , 2009 .

[15]  B. Hoex,et al.  Black silicon: fabrication methods, properties and solar energy applications , 2014 .

[16]  Mohamed A. Swillam,et al.  Optical biosensor based on a silicon nanowire ridge waveguide for lab on chip applications , 2015 .

[17]  Joshua M. Pearce,et al.  Optimization of open circuit voltage in amorphous silicon solar cells with mixed-phase "amorphous+nanocrystalline… p-type contacts of low nanocrystalline content , 2007 .

[18]  Xingzhong Zhao,et al.  Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays , 2005 .

[19]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[20]  Hele Savin,et al.  Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. , 2015, Nature nanotechnology.

[21]  Laurence Latu-Romain,et al.  Growth parameters and shape specific synthesis of silicon nanowires by the VLS method , 2008 .

[22]  S. D. Collins,et al.  Mechanism of nanowire formation in metal assisted chemical etching , 2013 .

[23]  Mohamed A. Swillam,et al.  Vertically aligned crystalline silicon nanowires with controlled diameters for energy conversion applications: Experimental and theoretical insights , 2014 .

[24]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[25]  Zongfu Yu,et al.  Hybrid silicon nanocone-polymer solar cells. , 2012, Nano letters.

[26]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[27]  W. K. Choi,et al.  Mechanics of Catalyst Motion during Metal Assisted Chemical Etching of Silicon , 2013 .

[28]  C. Tsang,et al.  Fabrication of n-type mesoporous silicon nanowires by one-step etching. , 2011, Nano letters.

[29]  Zhongyi Guo,et al.  Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics. , 2011, Optics express.

[30]  H. Föll,et al.  Crystal Orientation Dependence and Anisotropic Properties of Macropore Formation of p- and n-Type Silicon , 2001 .

[31]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[32]  Colm Glynn,et al.  Mesoporosity in doped silicon nanowires from metal assisted chemical etching monitored by phonon scattering , 2015 .

[33]  A. Barron,et al.  Nanopore-type black silicon anti-reflection layers fabricated by a one-step silver-assisted chemical etching. , 2013, Physical chemistry chemical physics : PCCP.

[34]  Eric Mazur,et al.  From black silicon to photovoltaic cells, using short pulse lasers , 2012 .

[35]  Dinesh Kumar,et al.  Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics , 2014, Nanotechnology.

[36]  Tzu-Ching Lin,et al.  Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells , 2015 .

[37]  R. Sougrat,et al.  Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method , 2012 .

[38]  Dinesh Kumar,et al.  Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics , 2010 .

[39]  Jihun Oh,et al.  Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting , 2011 .

[40]  Nadine Geyer,et al.  Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. , 2009, Nano letters.

[41]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[42]  A. Majumdar,et al.  Quantifying surface roughness effects on phonon transport in silicon nanowires. , 2012, Nano letters.

[43]  V. Roy,et al.  Porosification-reduced optical trapping of silicon nanostructures. , 2012, Nanoscale.

[44]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[45]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[46]  J. V. Coe,et al.  Extraordinary transmission of metal films with arrays of subwavelength holes. , 2008, Annual review of physical chemistry.

[47]  A. Tünnermann,et al.  A normal-incidence PtSi photoemissive detector with black silicon light-trapping , 2013 .

[48]  A. Ganguli,et al.  Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures , 2011, Nanoscale research letters.

[49]  A. Dinescu,et al.  Nanostructured Silicon for Optical Biosensors , 2007, 2007 International Semiconductor Conference.

[50]  J. Ho,et al.  One-dimensional nanostructured materials for solar energy harvesting , 2012 .

[51]  Mohamed A. Swillam,et al.  Facile omnidirectional black silicon based on porous and nonporous silicon nanowires for energy applications , 2016, 2016 Photonics North (PN).

[52]  R. J. Jaccodine,et al.  Surface Energy of Germanium and Silicon , 1963 .

[53]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[54]  J. Gilman,et al.  Direct Measurements of the Surface Energies of Crystals , 1960 .

[55]  Yit-Tsong Chen,et al.  Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation , 2004 .