Fatigue Life Prediction of GLARE Composites Using Regression Tree Ensemble‐Based Machine Learning Model

[1]  A. Kobayashi,et al.  CFRP shear strengthening system for steel bridge girders , 2018, Engineering Structures.

[2]  Yousef Al-Assaf,et al.  Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks , 2001 .

[3]  James Lankford,et al.  THE GROWTH OF SMALL FATIGUE CRACKS IN 7075–T6 ALUMINUM , 1982 .

[4]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[5]  T. Siwowski,et al.  Experimental study on CFRP-strengthened steel beams , 2018, Composites Part B: Engineering.

[6]  Maria C. S. Albuquerque,et al.  Decision support system for ultrasound inspection of fiber metal laminates using statistical signal processing and neural networks. , 2013, Ultrasonics.

[7]  Takashi Matsumura,et al.  Fatigue crack growth properties of a GLARE3-5/4 fiber/metal laminate , 1999 .

[8]  Theodoros H. Loutas,et al.  Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements , 2012, Expert Syst. Appl..

[9]  R. Benedictus,et al.  Impact resistance of fiber-metal laminates: A review , 2012 .

[10]  Wei Zhang,et al.  A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation , 2017, Materials.

[11]  L. Lang,et al.  Innovative approach to mass production of fiber metal laminate sheets , 2018 .

[12]  R. Benedictus,et al.  Analytical prediction model for non-symmetric fatigue crack growth in Fibre Metal Laminates , 2017 .

[13]  T. Aoki,et al.  The strain performance of thin CFRP-SPCC hybrid laminates for automobile structures , 2019, Composite Structures.

[14]  Theodoros Loutas,et al.  A data-driven probabilistic framework towards the in-situ prognostics of fatigue life of composites based on acoustic emission data , 2017 .

[15]  Gin Boay Chai,et al.  Low velocity impact response of fibre-metal laminates – A review , 2014 .

[16]  Jenn‐Ming Yang,et al.  Analytical modelling and numerical simulation of the nonlinear deformation of hybrid fibre–metal laminates , 2005 .

[17]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[18]  Dahai Zhang,et al.  A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost , 2018, IEEE Access.

[19]  N. Pantelelis,et al.  Automated, Quality Assured and High Volume Oriented Production of Fiber Metal Laminates (FML) for the Next Generation of Passenger Aircraft Fuselage Shells , 2019, Science and Engineering of Composite Materials.

[20]  M. Ciavarella,et al.  A generalized Paris' law for fatigue crack growth , 2006 .

[21]  Dennis G O'Connell,et al.  Research Corner: Regression Analysis for Prediction: Understanding the Process , 2009, Cardiopulmonary physical therapy journal.

[22]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[23]  Andy Liaw,et al.  Extreme Gradient Boosting as a Method for Quantitative Structure-Activity Relationships , 2016, J. Chem. Inf. Model..

[24]  Khurram Kamal,et al.  Prediction of fatigue crack growth rate in aircraft aluminum alloys using radial basis function neural network , 2018, 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI).

[25]  Efstratios F. Georgopoulos,et al.  Artificial neural networks in spectrum fatigue life prediction of composite materials , 2007 .

[26]  Kai Song,et al.  A steel property optimization model based on the XGBoost algorithm and improved PSO , 2020 .

[27]  Jenn‐Ming Yang,et al.  Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates , 2008 .

[28]  Deok-Kee Choi,et al.  Data-Driven Materials Modeling with XGBoost Algorithm and Statistical Inference Analysis for Prediction of Fatigue Strength of Steels , 2019, International Journal of Precision Engineering and Manufacturing.

[29]  René Alderliesten,et al.  Fatigue Crack Propagation and Delamination Growth in Glare , 2007 .

[30]  T. Aoki,et al.  The evaluation of failure mode behavior of CFRP/Adhesive/SPCC hybrid thin laminates under axial and flexural loading for structural applications , 2020 .

[31]  KhannaSanjeev,et al.  Space-efficient online computation of quantile summaries , 2001 .

[32]  Douglas L. Jones,et al.  A Stiffness Degradation Model for Graphite/Epoxy Laminates , 1988 .

[33]  Debabrata Chakraborty,et al.  Artificial neural network based delamination prediction in laminated composites , 2005 .

[34]  Charles R. Farrar,et al.  Machine Learning Applications for a Wind Turbine Blade under Continuous Fatigue Loading , 2013 .

[35]  P. C. Paris,et al.  The Stress Analysis of Cracks Handbook, Third Edition , 2000 .

[36]  G.H.J.J. Roebroeks,et al.  Fibre-metal laminates: Recent developments and applications , 1994 .

[37]  Narayan Kovvali,et al.  Fatigue Life Prediction Using Hybrid Prognosis for Structural Health Monitoring , 2012, J. Aerosp. Inf. Syst..

[38]  Nezih Mrad,et al.  Prognostics of damage growth in composite materials using machine learning techniques , 2017, 2017 IEEE International Conference on Industrial Technology (ICIT).

[39]  Yousef Al-Assaf,et al.  Prediction of the fatigue life of unidirectional glass fiber/epoxy composite laminae using different neural network paradigms , 2002 .

[40]  J. Homan,et al.  Fatigue initiation in fibre metal laminates , 2006 .

[41]  Jing Li,et al.  Fiberglass-Reinforced Polyester Composites Fatigue Prediction Using Novel Data-Intelligence Model , 2018, Arabian Journal for Science and Engineering.