Recognizing k-equistable Graphs in FPT Time

A graph $$G = V,E$$ is called equistable if there exist a positive integer t and a weight function $$w : V \rightarrow \mathbb {N}$$ such that $$S \subseteq V$$ is a maximal stable set of G if and only if $$wS = t$$. Such a function w is called an equistable function of G. For a positive integer k, a graph $$G = V,E$$ is said to be k-equistable if it admits an equistable function which is bounded by k. We prove that the problem of recognizing k-equistable graphs is fixed parameter tractable when parameterized by k, affirmatively answering a question of Levit et al. In fact, the problem admits an $$Ok^5$$-vertex kernel that can be computed in linear time.

[1]  Michel Habib,et al.  A New Linear Algorithm for Modular Decomposition , 1994, CAAP.

[2]  Feng Sun,et al.  Equistable graphs , 1994, J. Graph Theory.

[3]  Martin Milanic,et al.  Equistable graphs, general partition graphs, triangle graphs, and graph products , 2011, Discret. Appl. Math..

[4]  Ton Kloks,et al.  On the Recognition of General Partition Graphs , 2003, WG.

[5]  Gábor Rudolf,et al.  Complexity results for equistable graphs and related classes , 2011, Ann. Oper. Res..

[6]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[7]  Udi Rotics,et al.  Equistable chordal graphs , 2003, Discret. Appl. Math..

[8]  Duane W. DeTemple,et al.  A characterization and hereditary properties for partitoon graphs , 1993, Discret. Math..

[9]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .

[10]  Martin Milanic,et al.  Equistarable Graphs and Counterexamples to Three Conjectures on Equistable Graphs , 2017, J. Graph Theory.

[11]  Michel Habib,et al.  Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations , 2008, ICALP.

[12]  Udi Rotics,et al.  Equistable distance-hereditary graphs , 2008, Discret. Appl. Math..

[13]  Gábor Rudolf,et al.  Structural Results for Equistable Graphs and Related Graph Classes , 2009 .

[14]  Ephraim Korach,et al.  Equistable series-parallel graphs , 2003, Discret. Appl. Math..

[15]  Charles Payan,et al.  A class of threshold and domishold graphs: equistable and equidominating graphs , 1980, Discret. Math..

[16]  Michael R. Fellows,et al.  Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.

[17]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[18]  Martin Milanic,et al.  Equistable simplicial, very well-covered, and line graphs , 2014, Discret. Appl. Math..

[19]  Martin Milanic,et al.  On the Recognition of k-Equistable Graphs , 2012, WG.