A single-molecule barcoding system using nanoslits for DNA analysis

Molecular confinement offers new routes for arraying large DNA molecules, enabling single-molecule schemes aimed at the acquisition of sequence information. Such schemes can rapidly advance to become platforms capable of genome analysis if elements of a nascent system can be integrated at an early stage of development. Integrated strategies are needed for surmounting the stringent experimental requirements of nanoscale devices regarding fabrication, sample loading, biochemical labeling, and detection. We demonstrate that disposable devices featuring both micro- and nanoscale features can greatly elongate DNA molecules when buffer conditions are controlled to alter DNA stiffness. Furthermore, we present analytical calculations that describe this elongation. We also developed a complementary enzymatic labeling scheme that tags specific sequences on elongated molecules within described nanoslit devices that are imaged via fluorescence resonance energy transfer. Collectively, these developments enable scaleable molecular confinement approaches for genome analysis.

[1]  J. Schellman,et al.  Flexibility of DNA , 1974, Biopolymers.

[2]  David C. Schwartz,et al.  Conformational dynamics of individual DNA molecules during gel electrophoresis , 1989, Nature.

[3]  A. Manz,et al.  Design of an open-tubular column liquid chromatograph using silicon chip technology , 1990 .

[4]  Erwin Frey,et al.  Statics and dynamics of single DNA molecules confined in nanochannels. , 2005, Physical review letters.

[5]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[6]  Theo Odijk,et al.  The statistics and dynamics of confined or entangled stiff polymers , 1983 .

[7]  S. Smith,et al.  Ionic effects on the elasticity of single DNA molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  David C. Schwartz,et al.  Effect of confinement on DNA dynamics in microfluidic devices , 2003 .

[9]  D C Schwartz,et al.  A quantitative study of optical mapping surfaces by atomic force microscopy and restriction endonuclease digestion assays. , 1998, Analytical biochemistry.

[10]  H. Aburatani,et al.  Ordered restriction endonuclease maps of yeast artificial chromosomes created by optical mapping on surfaces. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[11]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[12]  Penghua Zhang,et al.  Discovery of natural nicking endonucleases Nb.BsrDI and Nb.BtsI and engineering of top-strand nicking variants from BsrDI and BtsI , 2007, Nucleic acids research.

[13]  G. Wilson,et al.  Site-specific DNA-nicking mutants of the heterodimeric restriction endonuclease R.BbvCI. , 2005, Journal of molecular biology.

[14]  C. Effenhauser,et al.  Integrated capillary electrophoresis on flexible silicone microdevices:  analysis of DNA restriction fragments and detection of single DNA molecules on microchips. , 1997, Analytical chemistry.

[15]  David C. Schwartz,et al.  Sizing single DNA molecules , 1992, Nature.

[16]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[17]  J. Shendure,et al.  Materials and Methods Som Text Figs. S1 and S2 Tables S1 to S4 References Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome , 2022 .

[18]  G. Whitesides,et al.  Soft lithography in biology and biochemistry. , 2001, Annual review of biomedical engineering.

[19]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[20]  David C. Schwartz,et al.  A shotgun optical map of the entire Plasmodium falciparum genome , 1999, Nature Genetics.

[21]  T. Burkhardt Free energy of a semiflexible polymer in a tube and statistics of a randomly-accelerated particle , 1997 .

[22]  Pascal Silberzan,et al.  From the Cover: The dynamics of genomic-length DNA molecules in 100-nm channels. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Odijk On the ionic-strength dependence of the intrinsic viscosity of DNA. , 1979, Biopolymers.

[24]  E. Dimalanta,et al.  A Whole-Genome Shotgun Optical Map of Yersinia pestis Strain KIM , 2002, Applied and Environmental Microbiology.

[25]  J. Ubbink,et al.  Electrostatic-undulatory theory of plectonemically supercoiled DNA. , 1999, Biophysical journal.

[26]  R. H. Austin,et al.  DNA electrophoresis in microlithographic arrays , 1992, Nature.

[27]  David C. Schwartz,et al.  Refinement of optical map assemblies , 2006, Bioinform..

[28]  David C. Schwartz,et al.  Single-Molecule Approach to Bacterial Genomic Comparisons via Optical Mapping , 2004, Journal of bacteriology.

[29]  T. Odijk Polyelectrolytes near the rod limit , 1977 .

[30]  Christian H. Reccius,et al.  Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. , 2006, Biophysical journal.

[31]  E. Delamarche,et al.  Patterned delivery of immunoglobulins to surfaces using microfluidic networks. , 1997, Science.

[32]  P. Gennes,et al.  Dynamics of confined polymer chains , 1977 .

[33]  T. Anantharaman,et al.  High-resolution restriction maps of bacterial artificial chromosomes constructed by optical mapping. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Schwartz,et al.  Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. , 1993, Science.

[35]  David C. Schwartz,et al.  An algorithm for assembly of ordered restriction maps from single DNA molecules , 2006, Proceedings of the National Academy of Sciences.

[36]  Martin Fuchs,et al.  DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. , 2004, Genome research.

[37]  Juan J de Pablo,et al.  A microfluidic system for large DNA molecule arrays. , 2004, Analytical chemistry.

[38]  O. White,et al.  Whole-genome shotgun optical mapping of Deinococcus radiodurans. , 1999, Science.

[39]  D. Schwartz,et al.  Optical mapping of lambda bacteriophage clones using restriction endonucleases , 1995, Nature Genetics.

[40]  Robert Riehn,et al.  Restriction mapping in nanofluidic devices. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Gunnar Westman,et al.  Groove-binding unsymmetrical cyanine dyes for staining of DNA: dissociation rates in free solution and electrophoresis gels. , 2003, Nucleic acids research.

[42]  T. Anantharaman,et al.  Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Pui-Yan Kwok,et al.  Rapid DNA mapping by fluorescent single molecule detection , 2006, Nucleic acids research.

[44]  Björn Åkerman,et al.  DNA Electrophoresis in Gellan Gels. The Effect of Electroosmosis and Polymer Additives , 2002 .

[45]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[46]  T. Burkhardt FREE ENERGY OF A SEMIFLEXIBLE POLYMER CONFINED ALONG AN AXIS , 1995 .

[47]  J. Skolnick,et al.  Electrostatic Persistence Length of a Wormlike Polyelectrolyte , 1977 .

[48]  George M Whitesides,et al.  Generation of 30-50 nm structures using easily fabricated, composite PDMS masks. , 2002, Journal of the American Chemical Society.

[49]  Robert H. Austin,et al.  Fabrication of 10 nm enclosed nanofluidic channels , 2002 .

[50]  G. Whitesides,et al.  The use of self-assembled monolayers and a selective etch to generate patterned gold features , 1992 .