Finding input sub-spaces for Polymorphic Fuzzy Signatures

A significant feature of fuzzy signatures is its applicability for complex and sparse data. To create Polymorphic Fuzzy Signatures (PFS) for sparse data, sparse input sub-spaces (ISSs) should be considered. Finding the optimal ISSs manually is not a simple task as it is time consuming; moreover, some knowledge about the dataset is necessary. Fuzzy C-Means (FCM) clustering employed with a trapezoidal approximation method is needed to find ISSs automatically. Furthermore, dealing with sparse data, we should be mindful about choosing a reliable trapezoidal approximation method. This facilitates the optimal ISS creation for the data. In our experiment, two trapezoidal approximation methods were used to find optimal ISSs. The results demonstrate that our version of trapezoidal approximation for creating ISSs result in an PFS with lower mean square error compared to the original trapezoidal approximation method.

[1]  Tom Gedeon,et al.  Flexibility and robustness of hierarchical fuzzy signature structures with perturbed input data , 2006 .

[2]  László T. Kóczy,et al.  Efficient Fuzzy Cognitive Modeling for Unstructured Information , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[3]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[4]  T.D. Gedeon,et al.  On The Issue of Learning Weights from Observations for Fuzzy Signatures , 2006, 2006 World Automation Congress.

[5]  László T. Kóczy,et al.  Construction of fuzzy signature from data: an example of SARS pre-clinical diagnosis system , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[6]  László T. Kóczy,et al.  Learning Generalized Weighted Relevance Aggregation Operators Using Levenberg-Marquardt Method , 2006, 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06).

[7]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[8]  Kok Wai Wong,et al.  An improved multidimensional alpha-cut based fuzzy interpolation technique , 2000 .

[9]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[10]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[11]  Tom Gedeon,et al.  Aggregation Selection for Hierarchical Fuzzy Signatures: A Comparison of Hierarchical OWA and WRAO , 2008 .

[12]  László T. Kóczy,et al.  Hierarchical fuzzy signature structure of complex structured data , 2003 .

[13]  László T. Kóczy,et al.  A generalized concept for fuzzy rule interpolation , 2004, IEEE Transactions on Fuzzy Systems.

[14]  Babak Rezaee,et al.  A cluster validity index for fuzzy clustering , 2010, Fuzzy Sets Syst..

[15]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.

[16]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[17]  László T. Kóczy,et al.  Improvements and critique on Sugeno's and Yasukawa's qualitative modeling , 2002, IEEE Trans. Fuzzy Syst..

[18]  Yi Li,et al.  A cluster validity index for fuzzy clustering , 2008, Inf. Sci..

[19]  László T. Kóczy,et al.  Generalised Weighted Relevance Aggregation Operators for Hierarchical Fuzzy Signatures , 2006, 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA'06).

[20]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[21]  Michael J. A. Berry,et al.  Data mining techniques - for marketing, sales, and customer support , 1997, Wiley computer publishing.

[22]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[23]  László T. Kóczy,et al.  Fuzzy rule interpolation for multidimensional input spaces with applications: a case study , 2005, IEEE Transactions on Fuzzy Systems.

[24]  Tamás D. Gedeon,et al.  A comparison: Fuzzy signatures and Choquet Integral , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[25]  A. K. Pujari,et al.  Data Mining Techniques , 2006 .

[26]  Tamás D. Gedeon,et al.  Constructing hierarchical fuzzy rule bases for classification , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).