A Polly Cracker System Based on Satisfiability

This paper presents a public-key cryptosystem based on a subclass of the well-known satisfiability problem from propositional logic, namely the doubly-balanced 3–SAT problem. We describe the construction of an instance of our system – which is a modified Polly Cracker scheme – starting from such a 3-SAT formula. Then we discuss security issues: this is achieved on the one hand by exploring best methods to date for solving this particular problem, and on the other hand by studying (systems of multivariate) polynomial equation solving algorithms in this particular setting. The main feature of our system is the resistance to intelligent linear algebra attacks.

[1]  Neal Koblitz,et al.  Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.

[2]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[3]  R. Monasson,et al.  Statistical physics analysis of the computational complexity of solving random satisfiability problems using backtrack algorithms , 2000, cond-mat/0012191.

[4]  Jeffrey C. Lagarias,et al.  Cryptology and Computational Number Theory , 1997 .

[5]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[6]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[7]  Leonid A. Levin,et al.  Pseudo-random generation from one-way functions , 1989, STOC '89.

[8]  Andrew Odlyzko,et al.  The Rise and Fall of Knapsack Cryptosystems , 1998 .

[9]  David Pointcheval,et al.  REACT: Rapid Enhanced-Security Asymmetric Cryptosystem Transform , 2001, CT-RSA.

[10]  Rainer Steinwandt,et al.  Cryptanalysis of Polly Cracker , 2002, IEEE Trans. Inf. Theory.

[11]  David G. Mitchell,et al.  Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[12]  D. Bayer The division algorithm and the hilbert scheme , 1982 .

[13]  Dennis Hofheinz,et al.  A "differential" attack on Polly Cracker , 2002, Proceedings IEEE International Symposium on Information Theory,.

[14]  Toby Walsh,et al.  Proceedings of AAAI-96 , 1996 .

[15]  Adi Shamir,et al.  A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[16]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.

[17]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[18]  Gary L. Mullen,et al.  Finite Fields: Theory, Applications and Algorithms , 1994 .