A Polly Cracker System Based on Satisfiability
暂无分享,去创建一个
[1] Neal Koblitz,et al. Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.
[2] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[3] R. Monasson,et al. Statistical physics analysis of the computational complexity of solving random satisfiability problems using backtrack algorithms , 2000, cond-mat/0012191.
[4] Jeffrey C. Lagarias,et al. Cryptology and Computational Number Theory , 1997 .
[5] Bart Selman,et al. Noise Strategies for Improving Local Search , 1994, AAAI.
[6] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[7] Leonid A. Levin,et al. Pseudo-random generation from one-way functions , 1989, STOC '89.
[8] Andrew Odlyzko,et al. The Rise and Fall of Knapsack Cryptosystems , 1998 .
[9] David Pointcheval,et al. REACT: Rapid Enhanced-Security Asymmetric Cryptosystem Transform , 2001, CT-RSA.
[10] Rainer Steinwandt,et al. Cryptanalysis of Polly Cracker , 2002, IEEE Trans. Inf. Theory.
[11] David G. Mitchell,et al. Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.
[12] D. Bayer. The division algorithm and the hilbert scheme , 1982 .
[13] Dennis Hofheinz,et al. A "differential" attack on Polly Cracker , 2002, Proceedings IEEE International Symposium on Information Theory,.
[14] Toby Walsh,et al. Proceedings of AAAI-96 , 1996 .
[15] Adi Shamir,et al. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[16] Roberto J. Bayardo,et al. Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.
[17] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.
[18] Gary L. Mullen,et al. Finite Fields: Theory, Applications and Algorithms , 1994 .