Performance and Complexity of the Sequential Successive Cancellation Decoding Algorithm

Simulation results illustrating the performance and complexity of the sequential successive cancellation decoding algorithm are presented for the case of polar subcodes with Arikan and large kernels, as well as for extended BCH\ codes. Performance comparison with Arikan PAC and LDPC codes is provided. Furthermore, complete description of the decoding algorithm is presented.

[1]  Peter Trifonov,et al.  Multilevel buckets for sequential decoding of polar codes , 2015, 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[2]  Vera Miloslavskaya,et al.  Sequential Decoding of Polar Codes , 2014, IEEE Communications Letters.

[3]  Alexios Balatsoukas-Stimming,et al.  LLR-Based Successive Cancellation List Decoding of Polar Codes , 2013, IEEE Transactions on Signal Processing.

[4]  Vera Miloslavskaya,et al.  Polar Subcodes , 2015, IEEE Journal on Selected Areas in Communications.

[5]  Erdal Arikan,et al.  On the Origin of Polar Coding , 2015, IEEE Journal on Selected Areas in Communications.

[6]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[7]  Peter Trifonov,et al.  Randomized Polar Subcodes With Optimized Error Coefficient , 2020, IEEE Transactions on Communications.

[8]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[9]  Mohsen Moradi,et al.  Performance and Complexity of Sequential Decoding of PAC Codes , 2020, ArXiv.

[10]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[11]  Grigorii Trofimiuk,et al.  Fast Block Sequential Decoding of Polar Codes , 2018, IEEE Transactions on Vehicular Technology.

[12]  James L. Massey Variable-length codes and the Fano metric , 1972, IEEE Trans. Inf. Theory.

[13]  Peter Trifonov,et al.  On Construction of Polar Subcodes with Large Kernels , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[14]  Grigorii Trofimiuk,et al.  Reduced complexity window processing of binary polarization kernels , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[15]  Tao Jiang,et al.  Parity-Check-Concatenated Polar Codes , 2016, IEEE Communications Letters.

[16]  Peter Trifonov,et al.  A Score Function for Sequential Decoding of Polar Codes , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[17]  Vera Miloslavskaya,et al.  Polar codes with dynamic frozen symbols and their decoding by directed search , 2013, 2013 IEEE Information Theory Workshop (ITW).

[18]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[19]  Volker Kühn,et al.  A new code construction for polar codes using min-sum density , 2014, 2014 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[20]  Peter Trifonov,et al.  A randomized construction of polar subcodes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[21]  K. Niu,et al.  Stack decoding of polar codes , 2012 .

[22]  Marc P. C. Fossorier,et al.  Shuffled iterative decoding , 2005, IEEE Transactions on Communications.

[23]  Vera Miloslavskaya,et al.  Sequential decoding of polar codes with arbitrary binary kernel , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).