Challenges of Using Partial Discharge Measurements for Predictive Maintenance

This paper addresses the existing partial discharge (PD) measuring and detecting techniques which can be utilized by the utilities in their predictive maintenance programs. It also identifies the challenges which face utility engineers in collecting and analyzing partial discharge data. After addressing and highlighting these challenges, the paper discusses necessary research effort and methodologies to overcome these challenges

[1]  R. Bartnikas,et al.  Partial discharge pulse pattern recognition using Hidden Markov Models , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[2]  E. Gulski Discharge pattern recognition in high voltage equipment , 1995 .

[3]  Greg C. Stone,et al.  Continuous on-line partial discharge monitoring of generator stator windings , 1999 .

[4]  R. Bartnikas,et al.  Partial discharge pulse pattern recognition using an inductive inference algorithm , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[5]  E. Gulski,et al.  Neural networks as a tool for recognition of partial discharges , 1993 .

[6]  E. M. Lalitha,et al.  Wavelet analysis for classification of multi-source PD patterns , 2000 .

[7]  P. Ghosh,et al.  A new approach to identify electrical PD signal patterns using frequency spectral analysis , 2002, Annual Report Conference on Electrical Insulation and Dielectric Phenomena.

[8]  L. Satish,et al.  Can fractal features be used for recognizing 3-d partial discharge patterns , 1995 .

[9]  Ray Bartnikas,et al.  Partial discharges. Their mechanism, detection and measurement , 2002 .

[11]  E. Gulski,et al.  Diagnostic tools for condition monitoring of insulating materials , 1995, Proceedings of 1995 Conference on Electrical Insulation and Dielectric Phenomena.

[12]  L. Satish,et al.  Wavelet-based denoising of partial discharge signals buried in excessive noise and interference , 2003 .

[13]  K. D. Srivastava,et al.  Review of condition assessment of power transformers in service , 2002 .

[14]  M. Salama,et al.  PD pattern recognition with neural networks using the multilayer perceptron technique , 1993 .

[15]  H.-G. Kranz Diagnosis of partial discharge signals using neural networks and minimum distance classification , 1993 .

[16]  Magdy M. A. Salama,et al.  Fast match-based vector quantization partial discharge pulse pattern recognition , 2005, IEEE Transactions on Instrumentation and Measurement.

[17]  R. Arora,et al.  Partial discharge classification using principal component transformation , 2000 .

[18]  Magdy M. A. Salama,et al.  Fuzzy logic applied to PD pattern classification , 2000 .

[19]  Xiandong Ma,et al.  Interpretation of wavelet analysis and its application in partial discharge detection , 2002 .

[20]  M.T.C. Fang,et al.  PD classification by a modular neural network based on task decomposition , 1996 .

[21]  R. Candela,et al.  PD recognition by means of statistical and fractal parameters and a neural network , 2000 .

[22]  Magdy M. A. Salama,et al.  Discrimination between PD pulse shapes using different neural network paradigms , 1994 .

[23]  K. Feser,et al.  An adaptive filter algorithm for on-site partial discharge measurements , 1988, Conference Record of the 1988 IEEE International Symposium on Electrical Insulation.

[24]  L.E. Lundgaard,et al.  Partial discharge. XIV. Acoustic partial discharge detection-practical application , 1992, IEEE Electrical Insulation Magazine.

[25]  Magdy M. A. Salama,et al.  Neural network system using the multi-layer perceptron technique for the recognition of PD pulse shapes due to cavities and electrical trees , 1995 .

[26]  L. Satish,et al.  Partial discharge pattern classification using multilayer neural networks , 1993 .

[27]  Magdy M. A. Salama,et al.  Determination of neural-network topology for partial discharge pulse pattern recognition , 2002, IEEE Trans. Neural Networks.

[28]  E. Gulski,et al.  Computer-aided measurement of partial discharges in HV equipment , 1993 .

[29]  B. T. Phung,et al.  Development of computer-based measurements and their application to PD pattern analysis , 1995 .