Ratiometric fluorescence turn-on sensing of perrhenate anion, a non-radioactive surrogate of hazardous pertechnetate, in aqueous solution

[1]  Ankur A. Awasthi,et al.  Stimulus-Responsive Supramolecular Aggregate Assembly of Auramine O Templated by Sulfated Cyclodextrin. , 2017, The journal of physical chemistry. B.

[2]  P. Beer,et al.  Selective perrhenate recognition in pure water by halogen bonding and hydrogen bonding alpha-cyclodextrin based receptors. , 2017, Chemical communications.

[3]  Ankur A. Awasthi,et al.  On the Molecular Form of Amyloid Marker, Auramine O, in Human Insulin Fibrils. , 2016, The journal of physical chemistry. B.

[4]  Prabhat K. Singh,et al.  Fluorescent H-Aggregates Hosted by a Charged Cyclodextrin Cavity. , 2016, Chemistry.

[5]  Maotian Xu,et al.  A label-free fluorescent molecular switch for a DNA hybridization assay utilizing a G-quadruplex-selective auramine O. , 2015, Chemical communications.

[6]  Jason Y. C. Lim,et al.  Superior perrhenate anion recognition in water by a halogen bonding acyclic receptor. , 2015, Chemical communications.

[7]  Joydeep Dhar,et al.  Herringbone to cofacial solid state packing via H-bonding in diketopyrrolopyrrole (DPP) based molecular crystals: influence on charge transport. , 2015, Chemical communications.

[8]  S. Nath,et al.  Dynamics under confinement: torsional dynamics of Auramine O in a nanocavity , 2014 .

[9]  G. Bergamaschi,et al.  Fluorescent sensing of 99Tc pertechnetate in water , 2014 .

[10]  B. Heyne,et al.  Size does matter: how to control organization of organic dyes in aqueous environment using specific ion effects. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[11]  G. Bergamaschi,et al.  99TcO4(-): selective recognition and trapping in aqueous solution. , 2012, Angewandte Chemie.

[12]  G. Bergamaschi,et al.  Cavity Effect on Perrhenate Recognition by Polyammonium Cages , 2012 .

[13]  Philip A. Gale,et al.  Anion receptor chemistry: highlights from 2010. , 2012, Chemical Society reviews.

[14]  S. Lippard,et al.  Immobilization, trapping, and anion exchange of perrhenate ion using copper-based tripodal complexes. , 2011, Inorganic chemistry.

[15]  S. Kubik Anion recognition in water. , 2010, Chemical Society reviews.

[16]  Werner Kunz,et al.  Specific ion effects in colloidal and biological systems , 2010 .

[17]  F. Spano The spectral signatures of Frenkel polarons in H- and J-aggregates. , 2010, Accounts of chemical research.

[18]  G. V. Kolesnikov,et al.  Molecular recognition of pertechnetate and perrhenate. , 2009, Chemical Society reviews.

[19]  W. Herrmann,et al.  A cheap, efficient, and environmentally benign synthesis of the versatile catalyst methyltrioxorhenium (MTO). , 2007, Angewandte Chemie.

[20]  K. D. Collins,et al.  Ions in water: characterizing the forces that control chemical processes and biological structure. , 2007, Biophysical chemistry.

[21]  Hiroharu Yui,et al.  The Ultrafast Relaxation Dynamics of a Viscosity Probe Molecule in an AOT-Reversed Micelle: Contribution of the Specific Interactions with the Local Environment , 2004 .

[22]  E. Dadachova,et al.  Kinetics of Perrhenate Uptake and Comparative Biodistribution of Perrhenate, Pertechnetate, and Iodide by Nai Symporter–expressing Tissues in Vivo , 2022 .

[23]  K. L. Nagy,et al.  Perrhenate uptake by iron and aluminum oxyhydroxides: an analogue for pertechnetate incorporation in Hanford waste tank sludges. , 2004, Environmental science & technology.

[24]  Sang-Don Jung,et al.  Enhanced emission and its switching in fluorescent organic nanoparticles. , 2002, Journal of the American Chemical Society.

[25]  Hong Zhang,et al.  Ultrafast Twisting Dynamics of Photoexcited Auramine in Solution , 1998 .

[26]  D. L. Blanchard,et al.  Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal , 1997 .

[27]  R. Colton The chemistry of rhenium and technetium , 1965 .

[28]  G. Oster,et al.  Fluorescence and Internal Rotation: Their Dependence on Viscosity of the Medium1 , 1956 .