Imaging Catalysts at Work: A Hierarchical Approach from the Macro‐ to the Meso‐ and Nano‐scale

This review highlights the importance of developing multi‐scale characterisation techniques for analysing operating catalysts in their working environment. We emphasise that a hierarchy of in situ techniques that provides macro‐, meso‐ and nano‐scale information is required to elucidate and optimise catalyst performance fully. This combined methodology should ideally embrace spatially resolved and spatio‐temporal monitoring of a) the structure, catalytic activity, temperature and heat/mass transfer pattern in axial and radial directions in real reactors, b) the structure and temperature/heat/mass transport gradients in shaped catalysts and catalyst grains and c) meso‐ and nano‐scale information about particles and clusters, whose physical and electronic properties are linked directly to the micro‐kinetic behaviour of the catalysts. Techniques such as X‐ray diffraction (XRD), infrared (IR), Raman, X‐ray photoelectron spectroscopy (XPS), UV/Vis, and X‐ray absorption spectroscopy (XAS), which have mainly provided global atomic scale information, are being developed to provide the same information on a more local scale, often with sub‐second time resolution. X‐ray microscopy, both in the soft and more recently in the hard X‐ray regime, allows two‐ and three‐dimensional information to be collected down to 10 nm spatial resolution in a gas atmosphere or liquid, although this improvement is at the expense of temporal resolution. Electron microscopy, which provides excellent local atomic scale structural and spectroscopic information, is being developed towards tomographic imaging and realistic conditions, allowing gaps to be bridged in pressure, reaction conditions and length scales, up to the meso‐ and macro‐scale. In addition, new techniques such as single molecule fluorescence spectroscopy and non‐linear spectroscopic techniques are emerging. In this review, we discuss prospects for the development and combined application of both existing and new techniques for in situ catalyst characterisation.

[1]  Filippo Cavalca,et al.  Exploring the environmental transmission electron microscope. , 2012, Micron.

[2]  J. Jinschek,et al.  Image resolution and sensitivity in an environmental transmission electron microscope. , 2012, Micron.

[3]  Takahiro Shimizu,et al.  Development of a technique for in situ high temperature TEM observation of catalysts in a highly moisturized air atmosphere. , 2012, Journal of electron microscopy.

[4]  D. Su,et al.  Spherical structures composed of multiwalled carbon nanotubes: formation mechanism and catalytic performance. , 2012, Angewandte Chemie.

[5]  A. Lee,et al.  Active Site Elucidation in Heterogeneous Catalysis via In Situ X-Ray Spectroscopies , 2012 .

[6]  Xuhui Sun,et al.  Scanning transmission X-ray microscopy and X-ray absorption near-edge structure studies of N-doped carbon nanotubes sealed with N2 gas , 2012 .

[7]  Christian G. Schroer,et al.  Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes , 2012 .

[8]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[9]  B. Weckhuysen,et al.  Styrene oligomerization as a molecular probe reaction for Brønsted acidity at the nanoscale. , 2012, Physical chemistry chemical physics : PCCP.

[10]  W. Chao,et al.  Real space soft x-ray imaging at 10 nm spatial resolution. , 2012, Optics express.

[11]  B. Weckhuysen,et al.  X-ray imaging of zeolite particles at the nanoscale: influence of steaming on the state of aluminum and the methanol-to-olefin reaction. , 2012, Angewandte Chemie.

[12]  Hao Shen,et al.  Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. , 2012, Nature nanotechnology.

[13]  Nobuo Tanaka,et al.  Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy. , 2012, Journal of electron microscopy.

[14]  Michael F Toney,et al.  In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. , 2012, Journal of the American Chemical Society.

[15]  J. Miao,et al.  Electron tomography at 2.4-ångström resolution , 2012, Nature.

[16]  S Bals,et al.  Accurate segmentation of dense nanoparticles by partially discrete electron tomography. , 2012, Ultramicroscopy.

[17]  Ib Chorkendorff,et al.  Effect of Particle Morphology on the Ripening of Supported Pt Nanoparticles , 2012 .

[18]  S. Dahl,et al.  In situ transmission electron microscopy of light-induced photocatalytic reactions , 2012, Nanotechnology.

[19]  Katrin F. Domke,et al.  Host-guest geometry in pores of zeolite ZSM-5 spatially resolved with multiplex CARS spectromicroscopy. , 2012, Angewandte Chemie.

[20]  Bert M. Weckhuysen,et al.  Wirt‐Gast‐Geometrie in Zeolithporen von ZSM‐5: räumlich aufgelöst durch CARS‐Spektromikroskopie , 2012 .

[21]  A. Bell,et al.  High-resolution in situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles , 2012 .

[22]  Kees Joost Batenburg,et al.  Electron tomography based on a total variation minimization reconstruction technique , 2012 .

[23]  Peng Chen,et al.  How does a single Pt nanocatalyst behave in two different reactions? A single-molecule study. , 2012, Nano letters.

[24]  Pedro Avila,et al.  Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst. , 2012, Physical chemistry chemical physics : PCCP.

[25]  A. Beale,et al.  Chemical probing within catalyst bodies by diagonal offset Raman spectroscopy. , 2012, Angewandte Chemie.

[26]  M. Haruta,et al.  Visualizing Gas Molecules Interacting with Supported Nanoparticulate Catalysts at Reaction Conditions , 2012, Science.

[27]  Katrin F. Domke,et al.  Tracing catalytic conversion on single zeolite crystals in 3D with nonlinear spectromicroscopy. , 2012, Journal of the American Chemical Society.

[28]  J. Grunwaldt,et al.  Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique , 2012 .

[29]  Bert M. Weckhuysen,et al.  Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined μ-XRD-CT and μ-absorption-CT , 2012 .

[30]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[31]  Peter D. Lee,et al.  The influence of nanoscale microstructural variations on the pellet scale flow properties of hierarchical porous catalytic structures using multiscale 3D imaging , 2011 .

[32]  M. Bañares Operando Spectroscopy: the Knowledge Bridge to Assessing Structure–Performance Relationships in Catalyst Nanoparticles , 2011, Advanced materials.

[33]  Robert Schlögl,et al.  Structural dynamics of low-symmetry Au nanoparticles stimulated by electron irradiation. , 2011, Chemistry.

[34]  C. Chmelik,et al.  Micro-imaging of transient guest profiles in nanochannels. , 2011, The Journal of chemical physics.

[35]  D. Su,et al.  Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts. , 2011, Angewandte Chemie.

[36]  Wei Zhang,et al.  Nanopartikuläre intermetallische Verbindungen auf Kohlenstoffnanoröhren: aktive und selektive Hydrierungskatalysatoren , 2011 .

[37]  P. Midgley,et al.  Three-dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach. , 2011, Nano letters.

[38]  Yijin Liu,et al.  Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. , 2011, Journal of synchrotron radiation.

[39]  Jörg Maser,et al.  Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses. , 2011, Optics express.

[40]  S. Bals,et al.  Three-dimensional Atomic Imaging of Colloidal Coreàshell Nanocrystals , 2022 .

[41]  Theodore J. Heindel,et al.  A Review of X-Ray Flow Visualization With Applications to Multiphase Flows , 2011 .

[42]  U Kaiser,et al.  Transmission electron microscopy at 20 kV for imaging and spectroscopy. , 2011, Ultramicroscopy.

[43]  D. Su,et al.  Towards a More Accurate Particle Size Distribution of Supported Catalyst by using HAADF‐STEM , 2011 .

[44]  J. Liu Advanced Electron Microscopy of Metal–Support Interactions in Supported Metal Catalysts , 2011 .

[45]  P. Crozier,et al.  Atomic‐Scale Observation of the Ni Activation Process for Partial Oxidation of Methane Using In Situ Environmental TEM , 2011 .

[46]  T. Kamino,et al.  Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. , 2011, Journal of electron microscopy.

[47]  N. de Jonge,et al.  Transmission electron microscopy with a liquid flow cell , 2011, Journal of microscopy.

[48]  R. Schlögl,et al.  Gelöster Kohlenstoff kontrolliert die erste Phase des Nanokohlenstoffwachstums , 2011 .

[49]  Qiang Zhang,et al.  Dissolved carbon controls the initial stages of nanocarbon growth. , 2011, Angewandte Chemie.

[50]  G. Tendeloo,et al.  Three-dimensional atomic imaging of crystalline nanoparticles , 2011, Nature.

[51]  S Schöder,et al.  Non‐destructive and quantitative imaging of a nano‐structured microchip by ptychographic hard X‐ray scanning microscopy , 2011, Journal of microscopy.

[52]  I. Koptyug,et al.  Magnetic resonance imaging methods for in situ studies in heterogeneous catalysis. , 2010, Chemical Society reviews.

[53]  Hao Shen,et al.  Single-molecule fluorescence imaging of nanocatalytic processes. , 2010, Chemical Society reviews.

[54]  F. Meunier The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. , 2010, Chemical Society reviews.

[55]  A. Beale,et al.  Chemical imaging of catalytic solids with synchrotron radiation. , 2010, Chemical Society reviews.

[56]  T. Tachikawa,et al.  Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions. , 2010, Chemical Society reviews.

[57]  M. Roeffaers,et al.  Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. , 2010, Chemical Society reviews.

[58]  B. Weckhuysen,et al.  Infrared and Raman imaging of heterogeneous catalysts. , 2010, Chemical Society reviews.

[59]  J. Michaelis,et al.  Reporters in the nanoworld: diffusion of single molecules in mesoporous materials. , 2010, Chemical Society reviews.

[60]  Christian G. Schroer,et al.  Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. , 2010, Chemical Society reviews.

[61]  J. Wagner,et al.  Aberration corrected and monochromated environmental transmission electron microscopy: Challenges and prospects for materials science , 2010 .

[62]  Anders Holmen,et al.  Deactivation of cobalt based Fischer―Tropsch catalysts: A review , 2010 .

[63]  D. Su,et al.  Real-space observation of surface termination of a complex metal oxide catalyst. , 2010, Angewandte Chemie.

[64]  Rafal E. Dunin-Borkowski,et al.  In situ redox cycle of a nickel-YSZ fuel cell anode in an environmental transmission electron microscope , 2010 .

[65]  M. Haider,et al.  Information Transfer in a TEM Corrected for Spherical and Chromatic Aberration , 2010, Microscopy and Microanalysis.

[66]  B. Weckhuysen,et al.  Optical investigation of the intergrowth structure and accessibility of Brønsted acid sites in etched SSZ-13 zeolite crystals by confocal fluorescence microscopy. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[67]  Ib Chorkendorff,et al.  Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. , 2010, Journal of the American Chemical Society.

[68]  Christian G. Schroer,et al.  Hard X-ray nanoprobe at beamline P06 at PETRA III , 2010 .

[69]  Thierry Verbiest,et al.  Localization of p-nitroaniline chains inside zeolite ZSM-5 with second-harmonic generation microscopy. , 2010, Journal of the American Chemical Society.

[70]  Jian Wang,et al.  Nanoscale chemical imaging and spectroscopy of individual RuO(2) coated carbon nanotubes. , 2010, Chemical communications.

[71]  S. Brasselet,et al.  Probing molecular order in zeolite L inclusion compounds using two-photon fluorescence polarimetric microscopy. , 2010, The journal of physical chemistry. B.

[72]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[73]  J. Grunwaldt,et al.  Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al(2)O(3). , 2010, Physical chemistry chemical physics : PCCP.

[74]  J. Barthel,et al.  Expansion of interatomic distances in platinum catalyst nanoparticles , 2010 .

[75]  M. Burghammer,et al.  Hard X-ray Microscopy with Elemental, Chemical and Structural Contrast , 2010 .

[76]  C. D. Baertsch,et al.  Spatially resolved in situ FTIR analysis of CO adsorption and reaction on Pt/SiO2 in a silicon microreactor , 2009 .

[77]  S. Dahl,et al.  The role of monomeric iron during the selective catalytic reduction of NOx by NH3 over Fe-BEA zeolite catalysts , 2009 .

[78]  M. Wong,et al.  Identification of active Zr-WO(x) clusters on a ZrO2 support for solid acid catalysts. , 2009, Nature chemistry.

[79]  A. Beale,et al.  Tomographic energy dispersive diffraction imaging to study the genesis of Ni nanoparticles in 3D within gamma-Al2O3 catalyst bodies. , 2009, Journal of the American Chemical Society.

[80]  J. Grunwaldt,et al.  Investigation of the ignition behaviour of the noble metal catalyzed catalytic partial oxidation of methane , 2009 .

[81]  J. Grunwaldt,et al.  Insight into the structure of Pd/ZrO2 during the total oxidation of methane using combined in situ XRD, X-ray absorption and Raman spectroscopy , 2009 .

[82]  J. Grunwaldt Shining X-rays on catalysts at work , 2009 .

[83]  Christian Kisielowski,et al.  Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy , 2009 .

[84]  J. Grunwaldt,et al.  Structural changes of noble metal catalysts during ignition and extinction of the partial oxidation of methane studied by advanced QEXAFS techniques. , 2009, Physical chemistry chemical physics : PCCP.

[85]  William S. Epling,et al.  Spatially resolving concentration and temperature gradients during the oxidation of propylene on Pt/Al2O3 , 2009 .

[86]  A. Urakawa,et al.  Support Effects and Chemical Gradients along the Catalyst Bed in NOx Storage-Reduction Studied by Space- and Time-Resolved In Situ DRIFTS , 2009 .

[87]  Hidekazu Mimura,et al.  High-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused x-ray beam , 2009 .

[88]  J. Grunwaldt,et al.  Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy , 2009 .

[89]  A. Urakawa,et al.  Influence of Pt–Ba Proximity on NOx Storage–Reduction Mechanisms: A Space- and Time-Resolved In Situ Infrared Spectroscopic Study , 2009 .

[90]  William S. Epling,et al.  Spatial Resolution of Reactant Species Consumption in Diesel Oxidation Catalysts , 2009 .

[91]  Bert M. Weckhuysen Chemische Bildgebung von räumlichen Heterogenitäten in katalytischen Festkörpern auf unterschiedlichen Längen‐ und Zeitskalen , 2009 .

[92]  B. Weckhuysen Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. , 2009, Angewandte Chemie.

[93]  J. Grunwaldt,et al.  Axial Changes of Catalyst Structure and Temperature in a Fixed-Bed Microreactor During Noble Metal Catalysed Partial Oxidation of Methane , 2009 .

[94]  A. Urakawa,et al.  Space-Resolved Profiling Relevant in Heterogeneous Catalysis , 2009 .

[95]  A. Bleloch,et al.  Three-dimensional shapes and structures of lamellar-twinned fcc nanoparticles using ADF STEM. , 2009, Journal of electron microscopy.

[96]  D. Blom,et al.  Aberration-corrected STEM investigation of the M2 phase of MoVNbTeO selective oxidation catalyst. , 2009, Journal of electron microscopy.

[97]  J. M. Thomas,et al.  Untersuchung von Festkatalysatoren unter Betriebsbedingungen: Elektronen oder Röntgenstrahlen? , 2009 .

[98]  J. Thomas,et al.  Probing solid catalysts under operating conditions: electrons or X-rays? , 2009, Angewandte Chemie.

[99]  J. F. Creemer,et al.  Nanoscale chemical imaging of the reduction behavior of a single catalyst particle. , 2009, Angewandte Chemie.

[100]  K. Dahmen,et al.  Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. , 2009, Physical review letters.

[101]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[102]  P. Midgley,et al.  Electron tomography and holography in materials science. , 2009, Nature materials.

[103]  J. Grunwaldt,et al.  X-ray Absorption Spectroscopic Microscopy: From the Micro- to the Nanoscale , 2009 .

[104]  A. Verkleij,et al.  Electron tomography for heterogeneous catalysts and related nanostructured materials. , 2009, Chemical reviews.

[105]  Ulrich Dahmen,et al.  Atomic-resolution imaging with a sub-50-pm electron probe. , 2009, Physical review letters.

[106]  M. Farle,et al.  FePt Icosahedra with Magnetic Cores and Catalytic Shells , 2009 .

[107]  I. Chorkendorff,et al.  Transient behavior of Cu/ZnO-based methanol synthesis catalysts , 2009 .

[108]  N. Dudney,et al.  Thermal stability and catalytic activity of gold nanoparticles supported on silica , 2009 .

[109]  J. Grunwaldt,et al.  Visualizing a Catalyst at Work during the Ignition of the Catalytic Partial Oxidation of Methane , 2009 .

[110]  A. Urakawa,et al.  Space- and time-resolved combined DRIFT and Raman spectroscopy: monitoring dynamic surface and bulk processes during NO(x) storage reduction. , 2008, Angewandte Chemie.

[111]  J. F. Creemer,et al.  Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy , 2008, Nature.

[112]  Feng Tao,et al.  Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles , 2008, Science.

[113]  L. C. Gontard,et al.  Three‐dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black , 2008, Journal of microscopy.

[114]  L. Schmidt,et al.  Catalytic partial oxidation of methane on rhodium and platinum: Spatial profiles at elevated pressure , 2008 .

[115]  Satoshi Hata,et al.  Crack tip dislocations revealed by electron tomography in silicon single crystal , 2008 .

[116]  C. Allouis,et al.  Temperature profile in a reverse flow reactor for catalytic partial oxidation of methane by fast IR imaging , 2008 .

[117]  Atsushi Urakawa,et al.  On-chip Raman analysis of heterogeneous catalytic reaction in supercritical CO2: phase behaviour monitoring and activity profiling. , 2008, The Analyst.

[118]  G. Hutchings,et al.  Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation , 2008, Science.

[119]  C. Allouis,et al.  Reactor temperature profile during autothermal methane reforming on Rh/Al2O3 catalyst by IR imaging , 2008 .

[120]  M. Burghammer,et al.  Coherent x-ray diffraction imaging with nanofocused illumination. , 2008, Physical review letters.

[121]  J. F. Creemer,et al.  Atomic-scale electron microscopy at ambient pressure. , 2008, Ultramicroscopy.

[122]  Jasdeep S. Mandur,et al.  Spatially-Resolved Calorimetry: Using IR Thermography to Measure Temperature and Trapped NOX Distributions on a NOX Adsorber Catalyst , 2008 .

[123]  G. Deves,et al.  Nano-imaging of trace metals by synchrotron X-ray fluorescence into dopaminergic single cells and neurite-like processes , 2008 .

[124]  R. Sagdeev,et al.  Spatially resolved NMR thermometry of an operating fixed-bed catalytic reactor. , 2008, Journal of the American Chemical Society.

[125]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[126]  B. Weckhuysen,et al.  Intergrowth structure of zeolite crystals and pore orientation of individual subunits revealed by electron backscatter diffraction/focused ion beam experiments. , 2008, Angewandte Chemie.

[127]  T. Jacob,et al.  Surface chemistry of Ag particles: identification of oxide species by aberration-corrected TEM and by DFT calculations. , 2008, Angewandte Chemie.

[128]  K. Krischer,et al.  Pattern Formation during CO Electrooxidation on Thin Pt Films Studied with Spatially Resolved Infrared Absorption Spectroscopy , 2008 .

[129]  P. Cloetens,et al.  Using X-Ray Microtomography for Characterisation of Catalyst Particle Pore Structure , 2008 .

[130]  S. Stock Recent advances in X-ray microtomography applied to materials , 2008 .

[131]  S. Haigh,et al.  Transmission electron microscopy without aberrations: Applications to materials science , 2008 .

[132]  G. Ertl Reactions at surfaces: from atoms to complexity (Nobel Lecture). , 2008, Angewandte Chemie.

[133]  G. Ertl Reaktionen an Oberflächen: vom Atomaren zum Komplexen (Nobel‐Vortrag) , 2008 .

[134]  P. Bleuet,et al.  Probing the structure of heterogeneous diluted materials by diffraction tomography. , 2008, Nature materials.

[135]  B. Weckhuysen,et al.  Effect of the Nickel Precursor on the Impregnation and Drying of γ-Al2O3 Catalyst Bodies: A UV−vis and IR Microspectroscopic Study , 2008 .

[136]  Søren Dahl,et al.  Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy , 2008 .

[137]  D. Blom,et al.  Direct imaging of the MoVTeNbO M1 phase using an aberration-corrected high-resolution scanning transmission electron microscope. , 2008, Angewandte Chemie.

[138]  Q. Shen,et al.  Hard x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution. , 2008 .

[139]  B. Weckhuysen,et al.  Monitoring transport phenomena of paramagnetic metal-ion complexes inside catalyst bodies with magnetic resonance imaging. , 2008, Chemistry.

[140]  P. Midgley,et al.  TEM characterization of Ge precipitates in an Al-1.6at% Ge alloy. , 2008, Ultramicroscopy.

[141]  R. Tenne,et al.  Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. , 2008, Nano letters.

[142]  Ian McNulty,et al.  Nanoscale imaging of buried structures with elemental specificity using resonant x-ray diffraction microscopy. , 2008, Physical review letters.

[143]  B. Weckhuysen,et al.  On the Interaction between Co- and Mo-complexes in impregnation solutions used for the preparation of Al2O3-supported HDS catalysts: a combined Raman/UV-Vis-NIR spectroscopy study , 2008 .

[144]  M. Farle,et al.  Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. , 2008, Physical review letters.

[145]  N. Tanaka Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials∗ , 2008, Science and technology of advanced materials.

[146]  Lynn F. Gladden,et al.  Insights into gas–liquid–solid reactors obtained by magnetic resonance imaging , 2007 .

[147]  L. Allen,et al.  Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. , 2007, Ultramicroscopy.

[148]  Simon D M Jacques,et al.  Tomographic energy dispersive diffraction imaging as a tool to profile in three dimensions the distribution and composition of metal oxide species in catalyst bodies. , 2007, Angewandte Chemie.

[149]  B. Weckhuysen,et al.  Probing the transport of paramagnetic complexes inside catalyst bodies in a quantitative manner by magnetic resonance imaging. , 2007, Angewandte Chemie.

[150]  Olivier Mathon,et al.  Invited article: the fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. , 2007, The Review of scientific instruments.

[151]  B. Weckhuysen,et al.  Revealing shape selectivity and catalytic activity trends within the pores of H-ZSM-5 crystals by time- and space-resolved optical and fluorescence microspectroscopy. , 2007, Chemistry.

[152]  S. Pennycook,et al.  Dual Nanoparticle/Substrate Control of Catalytic Dehydrogenation , 2007 .

[153]  J. Grunwaldt,et al.  Distinct spatial changes of the catalyst structure inside a fixed-bed microreactor during the partial oxidation of methane over Rh/Al2O3 , 2007 .

[154]  A. Kirkland,et al.  Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. , 2007, Angewandte Chemie.

[155]  Kenneth A. Williams,et al.  Mechanism of H2 and CO formation in the catalytic partial oxidation of CH4 on Rh probed by steady-state spatial profiles and spatially resolved transients , 2007 .

[156]  P. Midgley,et al.  Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. , 2007, Environmental science & technology.

[157]  J. Robertson,et al.  In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. , 2007, Nano letters.

[158]  J. Grunwaldt,et al.  Monitoring a Catalyst at Work , 2006, CHIMIA.

[159]  Paul A. Midgley,et al.  Three-dimensional analysis of dislocation networks in GaN using weak-beam dark-field electron tomography , 2006 .

[160]  B. Weckhuysen,et al.  Spatially resolved UV–vis microspectroscopy on the preparation of alumina-supported Co Fischer–Tropsch catalysts: Linking activity to Co distribution and speciation , 2006 .

[161]  Kenneth A. Williams,et al.  Spatial and temporal profiles in millisecond partial oxidation processes , 2006 .

[162]  P. Midgley,et al.  Nanoscale scanning transmission electron tomography , 2006, Journal of microscopy.

[163]  P. Midgley,et al.  High-Resolution Three-Dimensional Imaging of Dislocations , 2006, Science.

[164]  Christian G. Schroer,et al.  Mapping the local nanostructure inside a specimen by tomographic small-angle x-ray scattering , 2006 .

[165]  Alfons Baiker,et al.  2D-mapping of the catalyst structure inside a catalytic microreactor at work: partial oxidation of methane over Rh/Al2O3. , 2006, The journal of physical chemistry. B.

[166]  G. Hutchings,et al.  Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts , 2006, Science.

[167]  Angus I. Kirkland,et al.  Materials Advances through Aberration-Corrected Electron Microscopy , 2006 .

[168]  B. Weckhuysen,et al.  Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard. , 2005, Physical chemistry chemical physics : PCCP.

[169]  H. Feng,et al.  Synchrotron X-ray microprobe and computed microtomography for characterization of nanocatalysts , 2005 .

[170]  H. Yoshida,et al.  Image formation in a transmission electron microscope equipped with an environmental cell : Single-walled carbon nanotubes in source gases , 2005 .

[171]  J. Kirz,et al.  Biological imaging by soft x-ray diffraction microscopy , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[172]  Jae-Soon Choi,et al.  Spatially resolved in situ measurements of transient species breakthrough during cyclic, low-temperature regeneration of a monolithic Pt/K/Al2O3 NOx storage-reduction catalyst , 2005 .

[173]  S. Marchesini,et al.  High-resolution ab initio three-dimensional x-ray diffraction microscopy. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[174]  B. Weckhuysen,et al.  Noninvasive in situ visualization of supported catalyst preparations using multinuclear magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[175]  Joshua S. Figueroa,et al.  Triatomic EP2 Triangles (E=Ge, Sn, Pb) as μ2:η3,η3‐Bridging Ligands , 2005 .

[176]  B. Weckhuysen,et al.  Insights into the preparation of supported catalysts: a spatially resolved Raman and UV-Vis spectroscopic study into the drying process of CoMo/gamma-Al2O3 catalyst bodies. , 2005, The journal of physical chemistry. B.

[177]  Renu Sharma An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials , 2005 .

[178]  E. Anderson,et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm , 2005, Nature.

[179]  P. Cloetens,et al.  Efficient sub 100 nm focusing of hard x rays , 2005 .

[180]  T. Ishikawa,et al.  Hard X-ray Diffraction-Limited Nanofocusing with Kirkpatrick-Baez Mirrors , 2005 .

[181]  B. Weckhuysen,et al.  UV-Vis microspectroscopy: probing the initial stages of supported metal oxide catalyst preparation. , 2005, Journal of the American Chemical Society.

[182]  J Ringnalda,et al.  Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. , 2005, Ultramicroscopy.

[183]  L. Gladden,et al.  Ultrafast velocity imaging of single- and two-phase flows in a ceramic monolith. , 2005, Magnetic resonance imaging.

[184]  I. Chorkendorff,et al.  Concepts of Modern Catalysis and Kinetics: CHORKEND:CONCEP.CATALYSIS O-BK , 2005 .

[185]  K. Kunimori,et al.  Effect of Ni Loading on Catalyst Bed Temperature in Oxidative Steam Reforming of Methane over α-Al2O3-Supported Ni Catalysts , 2005 .

[186]  Karl Sohlberg,et al.  Origin of anomalous Pt-Pt distances in the Pt/alumina catalytic system. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[187]  Bert M. Weckhuysen,et al.  Towards real-time spectroscopic process control for the dehydrogenation of propane over supported chromium oxide catalysts , 2004 .

[188]  B. Weckhuysen,et al.  Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2O3 extrudates. , 2004, Journal of the American Chemical Society.

[189]  T. Tyliszczak,et al.  An in-situ cell for characterization of solids by soft X-ray absorption , 2004 .

[190]  V. Parmon,et al.  Functional MRI and NMR spectroscopy of an operating gas-liquid-solid catalytic reactor. , 2004, Magnetic resonance imaging.

[191]  J. Nørskov,et al.  The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst , 2004 .

[192]  J. Grunwaldt,et al.  X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies , 2004 .

[193]  Renu Sharma,et al.  In situ observations of carbon nanotube formation using environmental transmission electron microscopy , 2004 .

[194]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[195]  P. Crozier,et al.  Lattice measurement and alloy compositions in metal and bimetallic nanoparticles. , 2003, Ultramicroscopy.

[196]  Bert M. Weckhuysen,et al.  Determining the active site in a catalytic process: Operando spectroscopy is more than a buzzword , 2003 .

[197]  Lynn F. Gladden,et al.  Recent Advances in MRI Studies of Chemical Reactors: Ultrafast Imaging of Multiphase Flows , 2003 .

[198]  D. Mahajan,et al.  Mapping metal catalysts using synchrotron computed microtomography (CMT) and micro-X-ray fluorescence (μXRF) , 2003 .

[199]  S. Haswell,et al.  Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer , 2003, Electrophoresis.

[200]  B. Inkson,et al.  Spectroscopic electron tomography. , 2003, Ultramicroscopy.

[201]  P. Midgley,et al.  3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. , 2003, Ultramicroscopy.

[202]  Dean R. Haeffner,et al.  Mapping the chemical states of an element inside a sample using tomographic x-ray absorption spectroscopy , 2003 .

[203]  H. Topsøe,et al.  Developments in operando studies and in situ characterization of heterogeneous catalysts , 2003 .

[204]  A. Datye Electron microscopy of catalysts: recent achievements and future prospects , 2003 .

[205]  L. Gladden,et al.  Quantitative 'real-time' imaging of multi-phase flow in ceramic monoliths. , 2003, Magnetic resonance imaging.

[206]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[207]  D. Luss,et al.  Hot zones formation in packed bed reactors , 2003 .

[208]  P. Gai,et al.  Electron microscopy in heterogeneous catalysis , 2003 .

[209]  Angelika Brückner,et al.  Looking on Heterogeneous Catalytic Systems from Different Perspectives: Multitechnique Approaches as a New Challenge for In Situ Studies , 2003 .

[210]  P. Kooyman,et al.  Quasi in situ sequential sulfidation of CoMo/Al2O3 studied using high-resolution electron microscopy , 2002 .

[211]  W. Stark,et al.  In situ XANES study on TiO2–SiO2 aerogels and flame made materials , 2002 .

[212]  L. Gladden,et al.  Dynamic MRI visualization of two‐phase flow in a ceramic monolith , 2002 .

[213]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[214]  B. Weckhuysen,et al.  Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. , 2002, Chemical communications.

[215]  R. Shimizu,et al.  Distorted surface and interface structures of catalytic gold nanoparticles observed by spherical aberration-free phase electron microscopy , 2001 .

[216]  Freek Kapteijn,et al.  Gas and liquid phase distribution and their effect on reactor performance in the monolith film flow reactor , 2001 .

[217]  G Oskarsdottir,et al.  Parallel analysis of the reaction products from combinatorial catalyst libraries. , 2001, Angewandte Chemie.

[218]  Chris M Snively,et al.  Parallelanalyse der Reaktionsprodukte von Katalysatorbibliotheken , 2001 .

[219]  Luca Basini,et al.  In Situ EXAFS Study of Rh/Al2O3 Catalysts for Catalytic Partial Oxidation of Methane , 2001 .

[220]  C. H. Bartholomew Mechanisms of catalyst deactivation , 2001 .

[221]  L. Gladden,et al.  Magnetic resonance visualisation of single- and two-phase flow in porous media. , 2001, Magnetic resonance imaging.

[222]  Lynn F. Gladden,et al.  Local transitions in flow phenomena through packed beds identified by MRI , 2000 .

[223]  Matveev,et al.  Thermally polarized (1)H NMR microimaging studies of liquid and gas flow in monolithic catalysts , 2000, Journal of magnetic resonance.

[224]  J. Grunwaldt,et al.  In Situ Investigations of Structural Changes in Cu/ZnO Catalysts , 2000 .

[225]  P. Crozier,et al.  Factors affecting the accuracy of lattice spacing determination by HREM in nanometre-sized Pt particles , 1999 .

[226]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[227]  T. Maschmeyer,et al.  The Influence of Steric Congestion on the Catalytic Performance of TiIV Active Centers in the Epoxidation of Alkenes , 1999 .

[228]  M. O'Keefe,et al.  Deceptive “lattice spacings” in high-resolution micrographs of metal nanoparticles , 1997 .

[229]  W. E. Soll,et al.  Pore level imaging of fluid transport using synchrotron X-ray microtomography , 1996 .

[230]  L. Marks Experimental studies of small particle structures , 1994 .

[231]  T. Mang,et al.  Adsorption of platinum complexes on silica and alumina: Preparation of non-uniform metal distributions within support pellets , 1993 .

[232]  P. L. Hansen,et al.  A combined QEXAFS/XRD method for on-line, in situ studies of catalysts: Examples of dynamic measurements of Cu-based methanol catalysts , 1993 .

[233]  A. Datye,et al.  The study of heterogeneous catalysts by high-resolution transmission electron microscopy , 1992 .

[234]  David J. Smith,et al.  Direct surface imaging in small metal particles , 1983, Nature.

[235]  W. L. Holstein,et al.  Impregnation of alumina with copper chloride-modeling of impregnation kinetics and internal copper profiles , 1983 .

[236]  J. Domínguez,et al.  Characterization of small platinum particles supported on graphite by electron microscopy , 1980 .

[237]  M. Treacy,et al.  Contrast effects in the transmission electron microscopy of supported crystalline catalyst particles , 1980 .

[238]  Tuncay Alan,et al.  In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400°C. , 2012, Ultramicroscopy.

[239]  B. Maribo-Mogensen,et al.  Internal Steam Reforming in Solid Oxide Fuel Cells , 2008 .

[240]  J. Grunwaldt,et al.  Axial variation of the oxidation state of Pt-Rh/Al2O3 during partial methane oxidation in a fixed-bed reactor: An in situ X-ray absorption spectroscopy study , 2005 .

[241]  J. Grunwaldt,et al.  Combining XRD and EXAFS with on-Line Catalytic Studies for in situ Characterization of Catalysts , 2002 .

[242]  E. Wolf,et al.  Infrared thermography studies of unsteady-state processes during co oxidation on supported catalysts , 1994 .

[243]  Laurence Marks,et al.  Direct imaging of carbon-covered and clean gold (110) surfaces , 1983 .