Large-Scale Experiments for Mathematical Document Classification
暂无分享,去创建一个
[1] Michael Kohlhase,et al. MathWebSearch 0.5 An Open Formula Search Engine , 2011, LWA.
[2] Petr Sojka,et al. Automated Classification and Categorization of Mathematical Knowledge , 2008, AISC/MKM/Calculemus.
[3] Heiko Paulheim,et al. Automated Feature Generation from Structured Knowledge , 2011 .
[4] Dan Shen,et al. Large-scale item categorization for e-commerce , 2012, CIKM.
[5] Wolf-Tilo Balke,et al. REVIEW DRIVEN CUSTOMER SEGMENTATION FOR IMPROVED E-SHOPPING EXPERIENCE , 2011 .
[6] Michael Kohlhase,et al. MathWebSearch 0.5: Scaling an Open Formula Search Engine , 2012, AISC/MKM/Calculemus.
[7] Hui Wan,et al. Personalized Tag Recommendations via Tagging and Content-based Similarity Metrics , 2007, ICWSM.
[8] Fabrizio Sebastiani,et al. Machine learning in automated text categorization , 2001, CSUR.
[9] Roelof van Zwol,et al. Flickr tag recommendation based on collective knowledge , 2008, WWW.
[10] Shi Bing,et al. Inductive learning algorithms and representations for text categorization , 2006 .
[11] Josef Urban,et al. The Mizar Mathematical Library in OMDoc: Translation and Applications , 2013, Journal of Automated Reasoning.
[12] Ee-Peng Lim,et al. Hierarchical text classification and evaluation , 2001, Proceedings 2001 IEEE International Conference on Data Mining.
[13] Tommaso Di Noia,et al. Semantic Wonder Cloud: Exploratory Search in DBpedia , 2010, ICWE Workshops.
[14] Florian Daniel,et al. Current Trends in Web Engineering , 2010, Lecture Notes in Computer Science.
[15] Yang Song,et al. Real-time automatic tag recommendation , 2008, SIGIR '08.
[16] Ray R. Larson. Experiments in automatic Library of Congress Classification , 1992 .
[17] Edward A. Fox,et al. Combining structural and citation-based evidence for text classification , 2004, CIKM '04.
[18] Yoram Singer,et al. Context-sensitive learning methods for text categorization , 1996, SIGIR '96.
[19] Wolfgang Nejdl,et al. Using ODP metadata to personalize search , 2005, SIGIR '05.