2 J un 2 01 7 Algebraic solution of tropical optimization problems via matrix sparsification with application to scheduling
暂无分享,去创建一个
[1] G. Litvinov. Maslov dequantization, idempotent and tropical mathematics: A brief introduction , 2005, math/0507014.
[2] Bernd Sturmfels,et al. Tropical Mathematics , 2004, math/0408099.
[3] Solution of generalized linear vector equations in idempotent algebra , 2006 .
[4] V. Kolokoltsov,et al. Idempotent Analysis and Its Applications , 1997 .
[5] Willi Hock,et al. Lecture Notes in Economics and Mathematical Systems , 1981 .
[6] Jean-Charles Billaut,et al. Multicriteria scheduling , 2005, Eur. J. Oper. Res..
[7] Raymond Cuninghame-Green,et al. Bases in max-algebra , 2004 .
[8] W. Marsden. I and J , 2012 .
[9] Nikolai Krivulin,et al. A multidimensional tropical optimization problem with a non-linear objective function and linear constraints , 2013, ArXiv.
[10] Nikolai K. Krivulin. A solution of a tropical linear vector equation , 2012, ArXiv.
[11] Nikolai Krivulin,et al. Extremal properties of tropical eigenvalues and solutions to tropical optimization problems , 2013, ArXiv.
[12] Nikolai Krivulin,et al. Complete Solution of a Constrained Tropical Optimization Problem with Application to Location Analysis , 2013, RAMiCS.
[13] Mario Vanhoucke,et al. Project Management with Dynamic Scheduling , 2012 .
[14] S. N. N. Pandit,et al. A New Matrix Calculus , 1961 .
[15] Nikolai Krivulin,et al. Tropical optimization problems in time-constrained project scheduling , 2015, ArXiv.
[16] Geert Jan Olsder,et al. Max Plus at Work-Modelling and Analysis of Synchronized Systems , 2006 .
[17] Nikolai Krivulin,et al. A constrained tropical optimization problem: complete solution and application example , 2013, ArXiv.
[18] Nikolai Krivulin,et al. Explicit solution of a tropical optimization problem with application to project scheduling , 2013, ArXiv.
[19] J. Golan. Semirings and Affine Equations over Them: Theory and Applications , 2003 .
[20] Nikolai Krivulin. Solving a Tropical Optimization Problem via Matrix Sparsification , 2015, RAMICS.
[21] K. Tam. Optimizing and approximating eigenvectors in max-algebra , 2010 .
[22] Professor Dr. Klaus Neumann,et al. Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.
[23] Michel Minoux,et al. Graphs, dioids and semirings : new models and algorithms , 2008 .
[24] B. Ciffler. Scheduling general production systems using schedule algebra , 1963 .
[25] Nikolai Krivulin,et al. A Maximization Problem in Tropical Mathematics: A Complete Solution and Application Examples , 2013, Informatica.
[26] Marianne Akian,et al. Max-Plus Algebra , 2006 .
[27] R. A. Cuninghame-Green,et al. Describing Industrial Processes with Interference and Approximating Their Steady-State Behaviour , 1962 .
[28] A. J. Hoffman. On abstract dual linear programs , 1963 .
[29] William M. McEneaney,et al. Max-plus methods for nonlinear control and estimation , 2005 .
[30] Nikolai Krivulin,et al. Tropical optimization problems with application to project scheduling with minimum makespan , 2014, Ann. Oper. Res..
[32] P. Butkovic. Max-linear Systems: Theory and Algorithms , 2010 .