Genetic tracker with adaptive neuro-fuzzy inference system for multiple target tracking

In this paper, a genetic tracker with adaptive neuro-fuzzy inference system (GT-ANFIS) is presented for multiple target tracking (MTT). First, the data association problem, formulated as an N-dimensional assignment problem, is solved using the genetic algorithm (GA), and then the inaccuracies in the estimation are corrected by the adaptive neuro-fuzzy inference system (ANFIS). The performances of the GT-ANFIS, the joint probabilistic data association filter (JPDAF), the genetic tracker (GT), and the genetic tracker with neural network (GT-NN) are compared with each other for six different tracking scenarios. It was shown that the tracks estimated by using proposed GT-ANFIS agree better with the true tracks than the tracks predicted by the JPDAF, the GT, and the GT-NN.

[1]  Dervis Karaboga,et al.  Tabu Search Tracker for Multiple Target Tracking , 2004 .

[2]  C. S. George Lee,et al.  Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems , 1996 .

[3]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[4]  Martin Brown,et al.  Neurofuzzy adaptive modelling and control , 1994 .

[5]  Aubrey B. Poore,et al.  Multidimensional assignment formulation of data association problems arising from multitarget and multisensor tracking , 1994, Comput. Optim. Appl..

[6]  Kerim Guney,et al.  Input Resistance Calculation for Circular Microstrip Antennas Using Adaptive Neuro-Fuzzy Inference System , 2004 .

[7]  Kerim Guney,et al.  Computation of resonant frequency for equilateral triangular microstrip antennas using the adaptive neuro-fuzzy inference system , 2004 .

[8]  Aubrey B. Poore,et al.  A New Lagrangian Relaxation Based Algorithm for a Class of Multidimensional Assignment Problems , 1997, Comput. Optim. Appl..

[9]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[10]  Y. Bar-Shalom,et al.  A generalized S-D assignment algorithm for multisensor-multitarget state estimation , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Robert J. Fitzgerald,et al.  Development of Practical PDA Logic for Multitarget Tracking by Microprocessor , 1986, 1986 American Control Conference.

[12]  Kerim Guney,et al.  Effective patch radius expression obtained using a genetic algorithm for the resonant frequency of electrically thin and thick circular microstrip antennas , 2000 .

[13]  Nikola K. Kasabov,et al.  HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems , 1999, Neural Networks.

[14]  M. Farooq,et al.  Fuzzy logic approach to data association , 1996, Defense, Security, and Sensing.

[15]  Y. Bar-Shalom,et al.  A new relaxation algorithm and passive sensor data association , 1992 .

[16]  Kerim Guney,et al.  "Adaptive Neuro-Fuzzy Inference System for Computing the Resonant Frequency of Circular Microstrip Antennas" , 2004 .

[17]  Henry Leung Neural network data association with application to multiple‐target tracking , 1996 .

[18]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[19]  Dervis Karaboga,et al.  Simple and accurate effective side length expression obtained by using a modified genetic algorithm for the resonant frequency of an equilateral triangular microstrip antenna , 1997 .

[20]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[21]  Ronald A. Iltis,et al.  Neural solution to the multitarget tracking data association problem , 1989 .

[22]  Lang Hong,et al.  A genetic algorithm based multi-dimensional data association algorithm for multi-sensor--multi-target tracking , 1997 .

[23]  Yee-Ming Chen,et al.  Fuzzy logic approach to multisensor data association , 2000 .

[24]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Applications and Advances , 1992 .

[25]  John Litva,et al.  Genetic algorithm for multiple-target-tracking data association , 1996, Defense, Security, and Sensing.

[26]  Kerim Guney,et al.  Cheap Joint Probabilistic Data Association with Adaptive Neuro-Fuzzy Inference System State Filter for Tracking Multiple Targets in Cluttered Environment , 2004 .

[27]  Kerim Guney,et al.  Artificial neural networks for calculating the association probabilities in multi-target tracking , 2004 .

[28]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[29]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[30]  Dervis Karaboga,et al.  Genetic tracker with neural network for single and multiple target tracking , 2006, Neurocomputing.

[31]  Kerim Guney,et al.  Adaptive neuro‐fuzzy inference system for computing patch radius of circular microstrip antennas , 2006 .

[32]  Kerim Guney,et al.  ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE INPUT RESISTANCE COMPUTATION OF RECTANGULAR MICROSTRIP ANTENNAS WITH THIN AND THICK SUBSTRATES , 2004 .

[33]  Kerim Guney,et al.  Adaptive neuro-fuzzy inference system for the computation of the bandwidth of electrically thin and thick rectangular microstrip antennas , 2006 .

[34]  D. B. Hillis,et al.  Using a genetic algorithm for multi-hypothesis tracking , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[35]  J. Litva,et al.  Performance of neural data associator , 1996 .

[36]  Ram-Nandan P. Singh,et al.  Fuzzy logic applications to multisensor-multitarget correlation , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[37]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .