NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans.

Phylogenetic analyses of non-LTR retrotransposons suggest that all elements can be divided into 11 lineages. The 3 oldest lineages show target site specificity for unique locations in the genome and encode an endonuclease with an active site similar to certain restriction enzymes. The more "modern" non-LTR lineages possess an apurinic endonuclease-like domain and generally lack site specificity. The genome sequence of Caenorhabditis elegans reveals the presence of a non-LTR retrotransposon that resembles the older elements, in that it contains a single open reading frame with a carboxyl-terminal restriction-like endonuclease domain. Located near the N-terminal end of the ORF is a cysteine protease domain not found in any other non-LTR element. The N2 strain of C. elegans appears to contain only one full-length and several 5' truncated copies of this element. The elements specifically insert in the Spliced leader-1 genes; hence the element has been named NeSL-1 (Nematode Spliced Leader-1). Phylogenetic analysis confirms that NeSL-1 branches very early in the non-LTR lineage and that it represents a 12th lineage of non-LTR elements. The target specificity of NeSL-1 for the spliced leader exons and the similarity of its structure to that of R2 elements leads to a simple model for its expression and retrotransposition.

[1]  Richard E. Davis,et al.  RNA Trans-splicing in Fasciola hepatica , 2001 .

[2]  T. Eickbush,et al.  Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[3]  H. Lessios,et al.  Evolution of sea urchin retroviral-like (SURL) elements: evidence from 40 echinoid species. , 1999, Molecular biology and evolution.

[4]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[5]  T. Eickbush,et al.  The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. , 1999, Molecular biology and evolution.

[6]  M. Hochstrasser,et al.  A new protease required for cell-cycle progression in yeast , 1999, Nature.

[7]  T. Eickbush,et al.  Conserved features at the 5′ end of Drosophila R2 retrotransposable elements: implications for transcription and translation , 1999, Insect molecular biology.

[8]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[9]  M. Labrador,et al.  Evolutionary relationships among the members of an ancient class of non-LTR retrotransposons found in the nematode Caenorhabditis elegans. , 1998, Molecular biology and evolution.

[10]  T. Eickbush,et al.  The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. , 1998, Molecular biology and evolution.

[11]  David G. Schatz,et al.  Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system , 1998, Nature.

[12]  J. V. Moran,et al.  The impact of L1 retrotransposons on the human genome , 1998, Nature Genetics.

[13]  W. Lathe,et al.  Are retrotransposons long-term hitchhikers? , 1998, Nature.

[14]  W. Lathe,et al.  A single lineage of r2 retrotransposable elements is an active, evolutionarily stable component of the Drosophila rDNA locus. , 1997, Molecular biology and evolution.

[15]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[16]  K. Lea,et al.  Operons and SL2 trans-splicing exist in nematodes outside the genus Caenorhabditis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[18]  C B Harley,et al.  Telomerase catalytic subunit homologs from fission yeast and human. , 1997, Science.

[19]  A. Aggarwal,et al.  Structure of the multimodular endonuclease FokI bound to DNA , 1997, Nature.

[20]  H. Robertson,et al.  Multiple Mariner transposons in flatworms and hydras are related to those of insects. , 1997, The Journal of heredity.

[21]  D. Hartl,et al.  Modern thoughts on an ancyent marinere: function, evolution, regulation. , 1997, Annual review of genetics.

[22]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[23]  Denise Grady Quick-Change Pathogens Gain an Evolutionary Edge , 1996, Science.

[24]  J. Berg,et al.  The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc , 1996, Science.

[25]  K. Lowenhaupt,et al.  Drosophila telomeres: new views on chromosome evolution. , 1996, Trends in genetics : TIG.

[26]  W. Lathe,et al.  Evolutionary stability of the R1 retrotransposable element in the genus Drosophila. , 1995, Molecular biology and evolution.

[27]  J. Freedman,et al.  Structure and Expression of Novel Spliced Leader RNA Genes in Caenorhabditis elegans(*) , 1995, The Journal of Biological Chemistry.

[28]  A. Gabriel,et al.  A new non-LTR retrotransposon provides evidence for multiple distinct site-specific elements in Crithidia fasciculata miniexon arrays. , 1995, Nucleic acids research.

[29]  C. Alonso,et al.  Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. , 1995, Journal of molecular biology.

[30]  T. Eickbush,et al.  Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. , 1995, Genetics.

[31]  T. Eickbush,et al.  R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes. , 1995, Nucleic acids research.

[32]  Thomas Blumenthal,et al.  Operons as a common form of chromosomal organization in C. elegans , 1994, Nature.

[33]  J. Boeke,et al.  An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. , 1994, Genes & development.

[34]  R. Davis,et al.  RNA trans-splicing in Fasciola hepatica. Identification of a spliced leader (SL) RNA and SL sequences on mRNAs. , 1994, Journal of Biological Chemistry.

[35]  Steven A. Williams,et al.  Molecular phylogenetic studies on filarial parasites based on 5S ribosomal spacer sequences. , 1994, Parasite.

[36]  W. Maddison,et al.  Phylogenetic analysis supports horizontal transfer of P transposable elements. , 1994, Molecular biology and evolution.

[37]  R. Levis,et al.  Transposons in place of telomeric repeats at a Drosophila telomere , 1993, Cell.

[38]  R. Britten,et al.  Phylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposons. , 1993, Molecular biology and evolution.

[39]  R. Sauer,et al.  Single amino acid substitutions uncouple the DNA binding and strand scission activities of Fok I endonuclease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Bryan,et al.  The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. , 1993 .

[41]  T. Eickbush,et al.  Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori. , 1993, Nucleic acids research.

[42]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[43]  T. Oelgeschläger,et al.  A site-directed mutagenesis study to identify amino acid residues involved in the catalytic function of the restriction endonuclease EcoRV. , 1992, Biochemistry.

[44]  T. Eickbush,et al.  Turnover of R1 (type I) and R2 (type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. , 1992, Genetics.

[45]  C. Beard,et al.  A new member of a family of site-specific retrotransposons is present in the spliced leader RNA genes of Trypanosoma cruzi , 1991, Molecular and cellular biology.

[46]  P. Sharp,et al.  "Five easy pieces". , 1991, Science.

[47]  R. Chan,et al.  Short leader sequences may be transferred from small RNAs to pre‐mature mRNAs by trans‐splicing in Euglena. , 1991, The EMBO journal.

[48]  A. Rajkovic,et al.  A spliced leader is present on a subset of mRNAs from the human parasite Schistosoma mansoni. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  T. Blumenthal,et al.  trans-spliced Caenorhabditis elegans mRNAs retain trimethylguanosine caps , 1990, Molecular and cellular biology.

[50]  S. Aksoy,et al.  SLACS retrotransposon from Trypanosoma brucei gambiense is similar to mammalian LINEs. , 1990, Nucleic acids research.

[51]  D. Schwartz,et al.  A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidia fasciculata. , 1990, Molecular and cellular biology.

[52]  T. Nilsen,et al.  Characterization and expression of a spliced leader RNA in the parasitic nematode Ascaris lumbricoides var. suum , 1989, Molecular and cellular biology.

[53]  T. Mackay Transposable elements and fitness in Drosophila melanogaster. , 1989, Genome.

[54]  T. Eickbush,et al.  Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S genes. , 1988, Nucleic acids research.

[55]  T. Eickbush,et al.  Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm , 1988, Cell.

[56]  D. Hirsh,et al.  Presence of the Caenorhabditis elegans spliced leader on different mRNAs and in different genera of nematodes. , 1988, Genes & development.

[57]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[58]  David Hirsh,et al.  A trans-spliced leader sequence on actin mRNA in C. elegans , 1987, Cell.

[59]  B. M. Honda,et al.  Genes coding for 5S ribosomal RNA of the nematode Caenorhabditis elegans. , 1985, Gene.