Maximal entanglement versus entropy for mixed quantum states

Maximally entangled mixed states are those states that, for a given mixedness, achieve the greatest possible entanglement. For two-qubit systems and for various combinations of entanglement and mixedness measures, the form of the corresponding maximally entangled mixed states is determined primarily analytically. As measures of entanglement, we consider entanglement of formation, relative entropy of entanglement, and negativity; as measures of mixedness, we consider linear and von Neumann entropies. We show that the forms of the maximally entangled mixed states can vary with the combination of (entanglement and mixedness) measures chosen. Moreover, for certain combinations, the forms of the maximally entangled mixed states can change discontinuously at a specific value of the entropy. Along the way, we determine the states that, for a given value of entropy, achieve maximal violation of Bell's inequality.

[1]  F. Verstraete,et al.  Entanglement versus bell violations and their behavior under local filtering operations. , 2001, Physical review letters.

[2]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[3]  B. Moor,et al.  A comparison of the entanglement measures negativity and concurrence , 2001, quant-ph/0108021.

[4]  W. Munro,et al.  Maximizing the entanglement of two mixed qubits , 2001, quant-ph/0103113.

[5]  B. Moor,et al.  Local filtering operations on two qubits , 2000, quant-ph/0011111.

[6]  B. Moor,et al.  Maximally entangled mixed states of two qubits , 2000, quant-ph/0011110.

[7]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[8]  T. Hiroshima,et al.  Maximally entangled mixed states under nonlocal unitary operations in two qubits , 2000 .

[9]  S. Virmani,et al.  Ordering states with entanglement measures , 1999, quant-ph/9911119.

[10]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[11]  J. Eisert,et al.  A comparison of entanglement measures , 1998, quant-ph/9807034.

[12]  M. Lewenstein,et al.  On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[13]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[14]  G. Vidal,et al.  LOCAL DESCRIPTION OF QUANTUM INSEPARABILITY , 1998 .

[15]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[16]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[17]  M. Plenio,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[18]  K. Jacobs,et al.  Statistical Inference, Distinguishability of Quantum States, And Quantum Entanglement , 1997, quant-ph/9703025.

[19]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[20]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[22]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[24]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[25]  To what extent do mixed states violate the Bell inequalities , 1995 .

[26]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[27]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[28]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[29]  Physical Review , 1965, Nature.