Non-markovian quantum state diffusion for absorption spectra of molecular aggregates.

In many molecular systems one encounters the situation where electronic excitations couple to a quasi-continuum of phonon modes. The interaction to that often structured continuum may be highly frequency dependent, e.g. due to some weakly damped high frequency modes. To handle such a situation, an approach combining the non-markovian quantum state diffusion description of open quantum systems with an efficient but abstract approximation was recently applied to calculate energy transfer and absorption spectra of molecular aggregates [J. Roden, A. Eisfeld, W. Wolff, W. T. Strunz, Phys. Rev. Lett. 103, 058301 (2009)]. To explore the validity of the used approximation for such complicated systems, in the present work we compare the calculated (approximative) absorption spectra with exact results. These are obtained from the method of pseudomodes, which we show to be capable of determining the exact spectra for small aggregates and a few pseudomodes. It turns out that in the cases considered, the results of the two approaches mostly agree quite well. The advantages and disadvantages of the two approaches are discussed.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  A. Eisfeld,et al.  Anomalous strong exchange narrowing in excitonic systems. , 2011, The Journal of chemical physics.

[3]  F. Stienkemeier,et al.  Laser-induced fluorescence spectroscopy of N,N'-dimethyl 3,4,9,10-perylene tetracarboxylic diimide monomers and oligomers attached to helium nanodroplets. , 2005, Physical chemistry chemical physics : PCCP.

[4]  Frank C. Spano,et al.  Analysis of the UV/Vis and CD spectral line shapes of carotenoid assemblies: spectral signatures of chiral H-aggregates. , 2009, Journal of the American Chemical Society.

[5]  B. M. Garraway,et al.  Nonperturbative decay of an atomic system in a cavity , 1997 .

[6]  B. Champagne,et al.  Prediction of Vibronic Coupling and Absorption Spectra of Dimers from Time-Dependent Density Functional Theory: The Case of a Stacked Streptocyanine. , 2008, Journal of chemical theory and computation.

[7]  Graham R. Fleming,et al.  Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations , 2002 .

[8]  A. Eisfeld,et al.  Excitons in molecular aggregates with Lévy-type disorder: anomalous localization and exchange broadening of optical spectra. , 2010, Physical review letters.

[9]  Jasper Knoester,et al.  Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. , 2009, Nature nanotechnology.

[10]  Javier Prior,et al.  Efficient simulation of strong system-environment interactions. , 2010, Physical review letters.

[11]  Walter T. Strunz,et al.  The non-Markovian stochastic Schrödinger equation for open systems , 1997, quant-ph/9706050.

[12]  Patrick Rebentrost,et al.  Non-Markovian quantum jumps in excitonic energy transfer. , 2009, The Journal of chemical physics.

[13]  A. Eisfeld,et al.  The shape of the J-band of pseudoisocyanine , 2007 .

[14]  Rienk van Grondelle,et al.  Energy transfer in photosynthesis: experimental insights and quantitative models. , 2006, Physical chemistry chemical physics : PCCP.

[15]  V. Engel The calculation of autocorrelation functions for spectroscopy , 1992 .

[16]  W. Kaiser,et al.  The first step of aggregation of pic: the dimerization , 1981 .

[17]  P. Scherer,et al.  On the theory of vibronic structure of linear aggregates. Application to pseudoisocyanin (PIC) , 1984 .

[18]  A. Eisfeld,et al.  The J- and H-bands of dye aggregate spectra: Analysis of the coherent exciton scattering (CES) approximation , 2008, 1008.3623.

[19]  Ting Yu,et al.  Non-Markovian quantum state diffusion: Perturbation approach , 1999, quant-ph/9902043.

[20]  R. Knox,et al.  Theory of Molecular Excitons , 1964 .

[21]  F. Stienkemeier,et al.  Laser-induced fluorescence spectroscopy of 3,4,9,10-perylenetetracarboxylic-dianhydrid in helium nanodroplets. , 2004, The Journal of chemical physics.

[22]  F. Spano Emission from aggregates of oligo-phenylene vinylenes: a recipe for superradiant H -aggregates , 2000 .

[23]  E. Teller,et al.  Migration and Photochemical Action of Excitation Energy in Crystals , 1938 .

[24]  J. Bonca,et al.  The Holstein Polaron , 1998, cond-mat/9812252.

[25]  A. Eisfeld,et al.  Exchange narrowing of the J band of molecular dye aggregates. , 2008, The Journal of chemical physics.

[26]  Thomas Renger,et al.  On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra , 2002 .

[27]  Frank Stienkemeier,et al.  Vibronic line shapes of PTCDA oligomers in helium nanodroplets. , 2010, The Journal of chemical physics.

[28]  P. Scherer MOLECULAR AGGREGATE SPECTRA , 1996 .

[29]  E. Kapon,et al.  Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes , 2004, IEEE Transactions on Nanotechnology.

[30]  Ian Percival,et al.  Quantum State Diffusion , 1998 .

[31]  J. Briggs,et al.  The J-band of organic dyes: lineshape and coherence length , 2002 .

[32]  A. Eisfeld,et al.  Absorption spectra of quantum aggregates interacting via long-range forces. , 2006, Physical review letters.

[33]  G. Fleming,et al.  Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. , 2009, The Journal of chemical physics.

[34]  R. Merrifield Vibronic States of Dimers , 1963 .

[35]  P. Scherer On the electronic and vibronic structure of PIC‐aggregates , 1995 .

[36]  E. S. Medvedev,et al.  Radiationless transitions in polyatomic molecules , 1995 .

[37]  Markus Schwoerer,et al.  Organic Molecular Solids , 2007 .

[38]  M. Gouterman,et al.  Vibronic Coupling. II. Spectra of Dimers , 1964 .

[39]  N. Gisin,et al.  Non-Markovian quantum state diffusion , 1998, quant-ph/9803062.

[40]  F. Robicheaux,et al.  Simulation of coherent interactions between Rydberg atoms , 2004 .

[41]  Jasper Knoester,et al.  Optical properties of disordered molecular aggregates: a numerical study , 1991 .

[42]  Philipp Marquetand,et al.  On the geometry dependence of molecular dimer spectra with an application to aggregates of perylene bisimide , 2006 .

[43]  J. Piilo,et al.  Pseudomodes as an effective description of memory: Non-Markovian dynamics of two-state systems in st , 2008, 0810.1361.

[44]  A. Witkowski,et al.  Electronic Spectra of Dimers: Derivation of the Fundamental Vibronic Equation , 1960 .

[45]  K. Schulten,et al.  Light harvesting complex II B850 excitation dynamics. , 2009, The Journal of chemical physics.

[46]  Qiang Shi,et al.  Optical line shapes of molecular aggregates: hierarchical equations of motion method. , 2009, The Journal of chemical physics.

[47]  W. Strunz,et al.  Vibronic energies and spectra of molecular dimers. , 2005, The Journal of chemical physics.

[48]  V. Bargmann On a Hilbert space of analytic functions and an associated integral transform part I , 1961 .

[49]  Thomas Renger,et al.  Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes , 2001 .

[50]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[51]  William T. Simpson,et al.  Coupling Strength for Resonance Force Transfer of Electronic Energy in Van der Waals Solids , 1957 .

[52]  R. Kniprath,et al.  Theory of the absorption and circular dichroism spectra of helical molecular aggregates. , 2007, The Journal of chemical physics.

[53]  Michael Schreiber,et al.  Calculation of absorption spectra for light-harvesting systems using non-Markovian approaches as well as modified Redfield theory. , 2006, The Journal of chemical physics.

[54]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction , 2000 .

[55]  M. Gouterman,et al.  Vibronic Coupling. I. Mathematical Treatment for Two Electronic States , 1961 .

[56]  EDWIN E. JELLEY,et al.  Spectral Absorption and Fluorescence of Dyes in the Molecular State , 1936, Nature.

[57]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[58]  G. Scheibe Reversible Polymerisation als Ursache neuartiger Absorptionsbanden von Farbstoffen , 1938 .

[59]  F. Spano,et al.  Vibronic fine structure in the absorption spectrum of oligothiophene thin films. , 2005, The Journal of chemical physics.

[60]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[61]  Ping Cui,et al.  Exact quantum master equation via the calculus on path integrals. , 2005, The Journal of chemical physics.

[62]  T. Gallagher,et al.  Resonant Dipole-Dipole Energy Transfer in a Nearly Frozen Rydberg Gas , 1998 .

[63]  S. Wüster,et al.  Newton's cradle and entanglement transport in a flexible Rydberg chain. , 2010, Physical review letters.

[64]  Arvi Freiberg,et al.  Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria : A wavelength-dependent selective spectroscopy study , 2009 .

[65]  A. V. Malyshev,et al.  Frequency-controlled localization of optical signals in graded plasmonic chains. , 2008, Nano letters.

[66]  A. Eisfeld,et al.  Motion of Rydberg atoms induced by resonant dipole–dipole interactions , 2007, 0712.3712.

[67]  V. Bulović,et al.  Electrostatic Formation of Quantum Dot/J-aggregate FRET Pairs in Solution , 2009 .

[68]  Ting Yu,et al.  Convolutionless Non-Markovian master equations and quantum trajectories: Brownian motion , 2004 .

[69]  Nicolas Gisin,et al.  Quantum approach to coupling classical and quantum dynamics , 1999, quant-ph/9902069.

[70]  Resonant transfer of excitons and quantum computation , 2002, quant-ph/0209078.

[71]  M. Weidemüller,et al.  Survival probabilities in coherent exciton transfer with trapping. , 2007, Physical review letters.

[72]  Imamoglu Stochastic wave-function approach to non-Markovian systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[73]  F. Würthner,et al.  Circular dichroism and absorption spectroscopy of merocyanine dimer aggregates: molecular properties and exciton transfer dynamics from time-dependent quantum calculations. , 2007, Physical chemistry chemical physics : PCCP.

[74]  A. Eisfeld,et al.  The J- and H-bands of organic dye aggregates , 2006 .

[75]  Christoph Meier,et al.  Non-Markovian evolution of the density operator in the presence of strong laser fields , 1999 .

[76]  Alexander Eisfeld,et al.  Influence of complex exciton-phonon coupling on optical absorption and energy transfer of quantum aggregates. , 2009, Physical review letters.

[77]  Nicolas Gisin,et al.  Open system dynamics with non-markovian quantum trajectories , 1999 .

[78]  M. Schreiber,et al.  Non-Markovian effects in the anisotropy of fluorescence in LH2 units , 2004 .

[79]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  T. Fritz,et al.  Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks. , 2004, Physical review letters.

[81]  Classical and quantum coupled oscillators: symplectic structure , 2005, quant-ph/0507140.

[82]  E. Knapp Lineshapes of molecular aggregates, exchange narrowing and intersite correlation , 1984 .

[83]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[84]  G. Fleming,et al.  On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. , 2009, The Journal of chemical physics.

[85]  W. Strunz,et al.  SPECTRAL PROPERTIES OF MOLECULAR OLIGOMERS: A NON-MARKOVIAN QUANTUM STATE DIFFUSION APPROACH , 2010, 1008.3611.