A two-level finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean

In this paper we proposed a two-level finite element discretization of the nonlinear stationary quasi-geostrophic equations, which model the wind driven large scale ocean circulation. Optimal error estimates for the two-level finite element discretization were derived. Numerical experiments for the two-level algorithm with the Argyris finite element were also carried out. The numerical results verified the theoretical error estimates and showed that, for the appropriate scaling between the coarse and fine mesh sizes, the two-level algorithm significantly decreases the computational time of the standard one-level algorithm.

[1]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[2]  M. Ben-Artzi,et al.  A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .

[3]  K. Bryan,et al.  A Numerical Investigation of a Nonlinear Model of a Wind-Driven Ocean , 1963 .

[4]  R. Nicolaides,et al.  Finite element technique for optimal pressure recovery from stream function formulation of viscous flows , 1986 .

[5]  Danfu Han,et al.  A two-grid algorithm based on Newton iteration for the stream function form of the Navier-Stokes equations , 2011 .

[6]  M Bernadou Straight and Curved Finite Elements of Class C1 and Some Applications to Thin Shell Problems , 1994 .

[7]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[8]  Rouben Rostamian,et al.  Variational problems in weighted Sobolev spaces on non-smooth domains , 2010 .

[9]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[10]  Robert L. Pego,et al.  Stability and convergence of efficient Navier‐Stokes solvers via a commutator estimate , 2007 .

[11]  Andrew J. Wathen,et al.  A block preconditioning technique for the streamfunction‐vorticity formulation of the Navier‐Stokes equations , 2012 .

[12]  Pedro Galán del Sastre,et al.  LONG-TERM BEHAVIOR OF THE WIND STRESS CIRCULATION OF A NUMERICAL NORTH ATLANTIC OCEAN CIRCULATION MODEL , 2004 .

[13]  Jian-Guo Liu,et al.  Stable and accurate pressure approximation for unsteady incompressible viscous flow , 2010, J. Comput. Phys..

[14]  Faisal Fairag Numerical Computations of Viscous, Incompressible Flow Problems Using a Two-Level Finite Element Method , 2003, SIAM J. Sci. Comput..

[15]  Andrew J. Majda,et al.  Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .

[16]  Eric Blayo,et al.  A Comparison of Two Numerical Methods for Integrating a Quasi-geostrophic Multilayer Model of Ocean Circulations , 1994 .

[17]  Dale B. Haidvogel,et al.  The accuracy, efficiency, and stability of three numerical models with application to open ocean problems , 1980 .

[18]  Emanuel Negrão Macêdo,et al.  Integral transform solution of the Navier–Stokes equations in full cylindrical regions with streamfunction formulation , 2010 .

[19]  Raz Kupferman,et al.  A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..

[20]  Jian Wang,et al.  Emergence of Fofonoff states in inviscid and viscous ocean circulation models , 1994 .

[21]  Jean-Pierre Croisille,et al.  Recent Developments in the Pure Streamfunction Formulation of the Navier-Stokes System , 2010, J. Sci. Comput..

[22]  Faisal Fairag A Two-Level Finite-Element Discretization of the Stream Function Form of the Navier-Stokes Equations , 1998 .

[23]  D. W. Scharpf,et al.  The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[24]  Rodolfo Rodríguez,et al.  A priori and a posteriori error analysis for a large-scale ocean circulation finite element model , 2003 .

[25]  Traian Iliescu,et al.  Two‐level discretization of the Navier‐Stokes equations with r‐Laplacian subgridscale viscosity , 2012 .

[26]  Xiu Ye,et al.  Nonconforming two-level discretization of stream function form of the Navier-Stokes equations , 1998 .

[27]  Traian Iliescu,et al.  A Two-Level Discretization Method for the Smagorinsky Model , 2008, Multiscale Model. Simul..

[28]  William Layton,et al.  Two-level discretizations of the stream function form of the navier-stokes equations , 1999 .

[29]  Andrew J. Weaver,et al.  A Diagnostic Barotropic Finite-Element Ocean Circulation Model , 1995 .

[30]  Richard J. Greatbatch,et al.  Four-Gyre Circulation in a Barotropic Model with Double-Gyre Wind Forcing , 2000 .

[31]  Zhen F. Tian,et al.  An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[32]  Rouben Rostamian,et al.  The optimal convergence rate of a C1 finite element method for non-smooth domains , 2010, J. Comput. Appl. Math..

[33]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[34]  George J. Fix,et al.  Finite Element Models for Ocean Circulation Problems , 1975 .

[35]  Sol Hellerman,et al.  Normal Monthly Wind Stress Over the World Ocean with Error Estimates , 1983 .

[36]  W. N. R. Stevens,et al.  Finite element, stream function–vorticity solution of steady laminar natural convection , 1982 .

[37]  M. Gunzburger,et al.  Finite-Element Methods for the Streamfunction-Vorticity Equations , 1988 .

[38]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[39]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[40]  J. McWilliams Fundamentals of Geophysical Fluid Dynamics , 2011 .

[41]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[42]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[43]  Francisco-Javier Sayas,et al.  Algorithm 884: A Simple Matlab Implementation of the Argyris Element , 2008, TOMS.

[44]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[45]  Pedro Galán del Sastre Estudio numérico del atractor en ecuaciones de navier-stokes aplicadas a modelos de circulación del océano , 2012 .

[46]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[47]  Henk A. Dijkstra,et al.  Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, , 2000 .

[48]  O. San,et al.  Approximate deconvolution large eddy simulation of a stratified two-layer quasigeostrophic ocean model , 2012, 1212.0140.

[49]  Erich L. Foster,et al.  A Finite Element Discretization of the Streamfunction Formulation of the Stationary Quasi-Geostrophic Equations of the Ocean , 2012, 1210.3630.

[50]  F. Fairag,et al.  Finite Element Technique for Solving the Stream Function Form of a Linearized Navier-Stokes Equations Using Argyris Element , 2004 .

[51]  Francisco Javier Sayas González,et al.  A simple Matlab implementation of the Argyris element , 2006 .

[52]  Rouben Rostamian,et al.  Variational problems in weighted sobolev spaces with applications to computational fluid dynamics , 2008 .

[53]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[54]  Traian Iliescu,et al.  Approximate deconvolution large eddy simulation of a barotropic ocean circulation model , 2011, 1104.2730.

[55]  T. Tachim Medjo Mixed formulation of the two-layer quasi-geostrophic equations of the ocean , 1999 .

[56]  Michael Ghil,et al.  Climate dynamics and fluid mechanics: Natural variability and related uncertainties , 2008, 1006.2864.

[57]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[58]  William C. Skamarock,et al.  A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids , 2010, J. Comput. Phys..

[59]  T. Tachim Medjo Numerical Simulations of a Two-Layer Quasi-Geostrophic Equation of the Ocean , 2000, SIAM J. Numer. Anal..

[60]  Jean-Pierre Croisille,et al.  Convergence of a Compact Scheme for the Pure Streamfunction Formulation of the Unsteady Navier-Stokes System , 2006, SIAM J. Numer. Anal..

[61]  L. Wahlbin On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .

[62]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[63]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[64]  Patrick F. Cummins,et al.  Inertial gyres in decaying and forced geostrophic turbulence , 1992 .

[65]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[66]  A. Majda Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .

[67]  Edriss S. Titi,et al.  Existence of solutions to the Stommel-Charney model of the Gulf Stream , 1988 .

[68]  Max Gunzburger,et al.  On finite element approximations of the streamfunction‐vorticity and velocity‐vorticity equations , 1988 .

[69]  X. Ye Two grid discretizations with backtracking of the stream function form of the Navier-Stokes equations , 1999, Appl. Math. Comput..

[70]  B. Cushman-Roisin,et al.  Introduction to geophysical fluid dynamics : physical and numerical aspects , 2011 .

[71]  H. Lenferink,et al.  An accurate solution procedure for fluid flow with natural convection , 1994 .

[72]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[73]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[74]  Max D. Gunzburger,et al.  A co-volume scheme for the rotating shallow water equations on conforming non-orthogonal grids , 2013, J. Comput. Phys..

[75]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[76]  Gershon Wolansky,et al.  Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation , 1988 .

[77]  Pavel B. Bochev,et al.  LEAST SQUARES FINITE ELEMENT METHODS FOR VISCOUS , INCOMPRESSIBLE FLOWS , 2006 .

[78]  Pedro Galán del Sastre,et al.  Error estimates of proper orthogonal decomposition eigenvectors and Galerkin projection for a general dynamical system arising in fluid models , 2008, Numerische Mathematik.

[79]  William Layton,et al.  A two-level discretization method for the Navier-Stokes equations , 1993 .