A two-level finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean
暂无分享,去创建一个
[1] R. Rannacher,et al. On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .
[2] M. Ben-Artzi,et al. A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .
[3] K. Bryan,et al. A Numerical Investigation of a Nonlinear Model of a Wind-Driven Ocean , 1963 .
[4] R. Nicolaides,et al. Finite element technique for optimal pressure recovery from stream function formulation of viscous flows , 1986 .
[5] Danfu Han,et al. A two-grid algorithm based on Newton iteration for the stream function form of the Navier-Stokes equations , 2011 .
[6] M Bernadou. Straight and Curved Finite Elements of Class C1 and Some Applications to Thin Shell Problems , 1994 .
[7] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[8] Rouben Rostamian,et al. Variational problems in weighted Sobolev spaces on non-smooth domains , 2010 .
[9] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[10] Robert L. Pego,et al. Stability and convergence of efficient Navier‐Stokes solvers via a commutator estimate , 2007 .
[11] Andrew J. Wathen,et al. A block preconditioning technique for the streamfunction‐vorticity formulation of the Navier‐Stokes equations , 2012 .
[12] Pedro Galán del Sastre,et al. LONG-TERM BEHAVIOR OF THE WIND STRESS CIRCULATION OF A NUMERICAL NORTH ATLANTIC OCEAN CIRCULATION MODEL , 2004 .
[13] Jian-Guo Liu,et al. Stable and accurate pressure approximation for unsteady incompressible viscous flow , 2010, J. Comput. Phys..
[14] Faisal Fairag. Numerical Computations of Viscous, Incompressible Flow Problems Using a Two-Level Finite Element Method , 2003, SIAM J. Sci. Comput..
[15] Andrew J. Majda,et al. Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .
[16] Eric Blayo,et al. A Comparison of Two Numerical Methods for Integrating a Quasi-geostrophic Multilayer Model of Ocean Circulations , 1994 .
[17] Dale B. Haidvogel,et al. The accuracy, efficiency, and stability of three numerical models with application to open ocean problems , 1980 .
[18] Emanuel Negrão Macêdo,et al. Integral transform solution of the Navier–Stokes equations in full cylindrical regions with streamfunction formulation , 2010 .
[19] Raz Kupferman,et al. A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..
[20] Jian Wang,et al. Emergence of Fofonoff states in inviscid and viscous ocean circulation models , 1994 .
[21] Jean-Pierre Croisille,et al. Recent Developments in the Pure Streamfunction Formulation of the Navier-Stokes System , 2010, J. Sci. Comput..
[22] Faisal Fairag. A Two-Level Finite-Element Discretization of the Stream Function Form of the Navier-Stokes Equations , 1998 .
[23] D. W. Scharpf,et al. The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).
[24] Rodolfo Rodríguez,et al. A priori and a posteriori error analysis for a large-scale ocean circulation finite element model , 2003 .
[25] Traian Iliescu,et al. Two‐level discretization of the Navier‐Stokes equations with r‐Laplacian subgridscale viscosity , 2012 .
[26] Xiu Ye,et al. Nonconforming two-level discretization of stream function form of the Navier-Stokes equations , 1998 .
[27] Traian Iliescu,et al. A Two-Level Discretization Method for the Smagorinsky Model , 2008, Multiscale Model. Simul..
[28] William Layton,et al. Two-level discretizations of the stream function form of the navier-stokes equations , 1999 .
[29] Andrew J. Weaver,et al. A Diagnostic Barotropic Finite-Element Ocean Circulation Model , 1995 .
[30] Richard J. Greatbatch,et al. Four-Gyre Circulation in a Barotropic Model with Double-Gyre Wind Forcing , 2000 .
[31] Zhen F. Tian,et al. An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..
[32] Rouben Rostamian,et al. The optimal convergence rate of a C1 finite element method for non-smooth domains , 2010, J. Comput. Appl. Math..
[33] J. Pedlosky. Geophysical Fluid Dynamics , 1979 .
[34] George J. Fix,et al. Finite Element Models for Ocean Circulation Problems , 1975 .
[35] Sol Hellerman,et al. Normal Monthly Wind Stress Over the World Ocean with Error Estimates , 1983 .
[36] W. N. R. Stevens,et al. Finite element, stream function–vorticity solution of steady laminar natural convection , 1982 .
[37] M. Gunzburger,et al. Finite-Element Methods for the Streamfunction-Vorticity Equations , 1988 .
[38] G. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .
[39] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[40] J. McWilliams. Fundamentals of Geophysical Fluid Dynamics , 2011 .
[41] G. Sangalli,et al. A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .
[42] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[43] Francisco-Javier Sayas,et al. Algorithm 884: A Simple Matlab Implementation of the Argyris Element , 2008, TOMS.
[44] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[45] Pedro Galán del Sastre. Estudio numérico del atractor en ecuaciones de navier-stokes aplicadas a modelos de circulación del océano , 2012 .
[46] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[47] Henk A. Dijkstra,et al. Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, , 2000 .
[48] O. San,et al. Approximate deconvolution large eddy simulation of a stratified two-layer quasigeostrophic ocean model , 2012, 1212.0140.
[49] Erich L. Foster,et al. A Finite Element Discretization of the Streamfunction Formulation of the Stationary Quasi-Geostrophic Equations of the Ocean , 2012, 1210.3630.
[50] F. Fairag,et al. Finite Element Technique for Solving the Stream Function Form of a Linearized Navier-Stokes Equations Using Argyris Element , 2004 .
[51] Francisco Javier Sayas González,et al. A simple Matlab implementation of the Argyris element , 2006 .
[52] Rouben Rostamian,et al. Variational problems in weighted sobolev spaces with applications to computational fluid dynamics , 2008 .
[53] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[54] Traian Iliescu,et al. Approximate deconvolution large eddy simulation of a barotropic ocean circulation model , 2011, 1104.2730.
[55] T. Tachim Medjo. Mixed formulation of the two-layer quasi-geostrophic equations of the ocean , 1999 .
[56] Michael Ghil,et al. Climate dynamics and fluid mechanics: Natural variability and related uncertainties , 2008, 1006.2864.
[57] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[58] William C. Skamarock,et al. A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids , 2010, J. Comput. Phys..
[59] T. Tachim Medjo. Numerical Simulations of a Two-Layer Quasi-Geostrophic Equation of the Ocean , 2000, SIAM J. Numer. Anal..
[60] Jean-Pierre Croisille,et al. Convergence of a Compact Scheme for the Pure Streamfunction Formulation of the Unsteady Navier-Stokes System , 2006, SIAM J. Numer. Anal..
[61] L. Wahlbin. On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .
[62] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[63] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[64] Patrick F. Cummins,et al. Inertial gyres in decaying and forced geostrophic turbulence , 1992 .
[65] Jinchao Xu,et al. A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..
[66] A. Majda. Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .
[67] Edriss S. Titi,et al. Existence of solutions to the Stommel-Charney model of the Gulf Stream , 1988 .
[68] Max Gunzburger,et al. On finite element approximations of the streamfunction‐vorticity and velocity‐vorticity equations , 1988 .
[69] X. Ye. Two grid discretizations with backtracking of the stream function form of the Navier-Stokes equations , 1999, Appl. Math. Comput..
[70] B. Cushman-Roisin,et al. Introduction to geophysical fluid dynamics : physical and numerical aspects , 2011 .
[71] H. Lenferink,et al. An accurate solution procedure for fluid flow with natural convection , 1994 .
[72] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[73] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[74] Max D. Gunzburger,et al. A co-volume scheme for the rotating shallow water equations on conforming non-orthogonal grids , 2013, J. Comput. Phys..
[75] William Layton,et al. Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .
[76] Gershon Wolansky,et al. Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation , 1988 .
[77] Pavel B. Bochev,et al. LEAST SQUARES FINITE ELEMENT METHODS FOR VISCOUS , INCOMPRESSIBLE FLOWS , 2006 .
[78] Pedro Galán del Sastre,et al. Error estimates of proper orthogonal decomposition eigenvectors and Galerkin projection for a general dynamical system arising in fluid models , 2008, Numerische Mathematik.
[79] William Layton,et al. A two-level discretization method for the Navier-Stokes equations , 1993 .