Gaussian states minimize the output entropy of one-mode quantum Gaussian channels

We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

[1]  Saikat Guha,et al.  The Entropy Photon-Number Inequality and its consequences , 2007, 2008 Information Theory and Applications Workshop.

[2]  J. Pierce The Proceedings of the IRE , 1954, Proceedings of the IRE.

[3]  R. Konig,et al.  The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.

[4]  J. Shapiro,et al.  Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture , 2007, 0706.3416.

[5]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[6]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[7]  October I Physical Review Letters , 2022 .

[8]  A. Holevo,et al.  A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .

[9]  A. Isar,et al.  ABOUT QUANTUM-SYSTEMS , 2004 .

[10]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[11]  A. Holevo,et al.  Quantum state majorization at the output of bosonic Gaussian channels , 2013, Nature Communications.

[12]  R. Schatten,et al.  Norm Ideals of Completely Continuous Operators , 1970 .

[13]  Lars-Ake Levin,et al.  Problems of Information Transmission , 1973 .

[14]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[15]  S. Lloyd,et al.  Passive states as optimal inputs for single-jump lossy quantum channels , 2016, 1603.05798.

[16]  Saikat Guha,et al.  Capacity of the bosonic wiretap channel and the Entropy Photon-Number Inequality , 2008, 2008 IEEE International Symposium on Information Theory.

[17]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[18]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[19]  Dario Trevisan,et al.  Gaussian States Minimize the Output Entropy of the One-Mode Quantum Attenuator , 2016, IEEE Transactions on Information Theory.

[20]  Saikat Guha,et al.  Quantum trade-off coding for bosonic communication , 2011, ArXiv.

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[22]  Howard Barnum,et al.  Quantum information processing , operational quantum logic , convexity , and the foundations of physics Los Alamos Technical Report LAUR 03-1199 , 2022 .

[23]  S. Olivares,et al.  Gaussian states in continuous variable quantum information , 2005, quant-ph/0503237.

[24]  L. Goddard Information Theory , 1962, Nature.

[25]  Giacomo De Palma,et al.  Passive States Optimize the Output of Bosonic Gaussian Quantum Channels , 2015, IEEE Transactions on Information Theory.

[26]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[27]  V.W.S. Chan,et al.  Free-Space Optical Communications , 2006, Journal of Lightwave Technology.

[28]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[29]  S. Lloyd,et al.  Majorization theory approach to the Gaussian channel minimum entropy conjecture. , 2011, Physical review letters.

[30]  Physical Review , 1965, Nature.

[31]  Kathy P. Wheeler,et al.  Reviews of Modern Physics , 2013 .

[32]  J. Habif,et al.  Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver , 2011, Nature Photonics.

[33]  V. Giovannetti,et al.  A generalization of the entropy power inequality to bosonic quantum systems , 2014, 1402.0404.

[34]  William IEEE TRANSACTIONS ON INFORMATION THEORY VOL XX NO Y MONTH Signal Propagation and Noisy Circuits , 2019 .

[35]  A. G. Kyurkchan,et al.  Theoretical and Mathematical Physics , 2004 .

[36]  Mirco Musolesi Questions and Comments Cis6930 Presentation Pertaining to Publication: Mirco Musolesi , Cecilia Mascolo, Designing Mobility Models Based on Social Network Theory, Acm Sigmobile Mobile Computing and Communications Review , 2009 .

[37]  Mark M. Wilde,et al.  Capacities of Quantum Amplifier Channels , 2016, ArXiv.

[38]  S. Lloyd,et al.  Multimode quantum entropy power inequality , 2014, 1408.6410.

[39]  Zoran Cvetkovic Information Theory and Applications Workshop , 2006 .

[40]  A. Holevo Gaussian optimizers and the additivity problem in quantum information theory , 2015, 1501.00652.

[41]  G. Illies,et al.  Communications in Mathematical Physics , 2004 .

[42]  J. Gordon,et al.  Quantum Effects in Communications Systems , 1962, Proceedings of the IRE.

[43]  A. Holevo,et al.  Majorization and additivity for multimode bosonic Gaussian channels , 2014, 1405.4066.

[44]  A. Holevo Multiplicativity of p-norms of completely positive maps and the additivity problem in quantum information theory , 2006 .

[45]  Saikat Guha,et al.  Classical Information Capacity of the Bosonic Broadcast Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[46]  Saikat Guha,et al.  Information trade-offs for optical quantum communication , 2012, Physical review letters.