Gaussian states minimize the output entropy of one-mode quantum Gaussian channels
暂无分享,去创建一个
Giacomo De Palma | Dario Trevisan | Vittorio Giovannetti | V. Giovannetti | G. Palma | Dario Trevisan
[1] Saikat Guha,et al. The Entropy Photon-Number Inequality and its consequences , 2007, 2008 Information Theory and Applications Workshop.
[2] J. Pierce. The Proceedings of the IRE , 1954, Proceedings of the IRE.
[3] R. Konig,et al. The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.
[4] J. Shapiro,et al. Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture , 2007, 0706.3416.
[5] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[6] S. Braunstein,et al. Quantum Information with Continuous Variables , 2004, quant-ph/0410100.
[7] October I. Physical Review Letters , 2022 .
[8] A. Holevo,et al. A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .
[9] A. Isar,et al. ABOUT QUANTUM-SYSTEMS , 2004 .
[10] Alexander Semenovich Holevo,et al. Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .
[11] A. Holevo,et al. Quantum state majorization at the output of bosonic Gaussian channels , 2013, Nature Communications.
[12] R. Schatten,et al. Norm Ideals of Completely Continuous Operators , 1970 .
[13] Lars-Ake Levin,et al. Problems of Information Transmission , 1973 .
[14] Mark M. Wilde,et al. Quantum Information Theory , 2013 .
[15] S. Lloyd,et al. Passive states as optimal inputs for single-jump lossy quantum channels , 2016, 1603.05798.
[16] Saikat Guha,et al. Capacity of the bosonic wiretap channel and the Entropy Photon-Number Inequality , 2008, 2008 IEEE International Symposium on Information Theory.
[17] Seth Lloyd,et al. Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.
[18] I. Ial,et al. Nature Communications , 2010, Nature Cell Biology.
[19] Dario Trevisan,et al. Gaussian States Minimize the Output Entropy of the One-Mode Quantum Attenuator , 2016, IEEE Transactions on Information Theory.
[20] Saikat Guha,et al. Quantum trade-off coding for bosonic communication , 2011, ArXiv.
[21] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[22] Howard Barnum,et al. Quantum information processing , operational quantum logic , convexity , and the foundations of physics Los Alamos Technical Report LAUR 03-1199 , 2022 .
[23] S. Olivares,et al. Gaussian states in continuous variable quantum information , 2005, quant-ph/0503237.
[24] L. Goddard. Information Theory , 1962, Nature.
[25] Giacomo De Palma,et al. Passive States Optimize the Output of Bosonic Gaussian Quantum Channels , 2015, IEEE Transactions on Information Theory.
[26] Axthonv G. Oettinger,et al. IEEE Transactions on Information Theory , 1998 .
[27] V.W.S. Chan,et al. Free-Space Optical Communications , 2006, Journal of Lightwave Technology.
[28] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[29] S. Lloyd,et al. Majorization theory approach to the Gaussian channel minimum entropy conjecture. , 2011, Physical review letters.
[30] Physical Review , 1965, Nature.
[31] Kathy P. Wheeler,et al. Reviews of Modern Physics , 2013 .
[32] J. Habif,et al. Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver , 2011, Nature Photonics.
[33] V. Giovannetti,et al. A generalization of the entropy power inequality to bosonic quantum systems , 2014, 1402.0404.
[34] William. IEEE TRANSACTIONS ON INFORMATION THEORY VOL XX NO Y MONTH Signal Propagation and Noisy Circuits , 2019 .
[35] A. G. Kyurkchan,et al. Theoretical and Mathematical Physics , 2004 .
[36] Mirco Musolesi. Questions and Comments Cis6930 Presentation Pertaining to Publication: Mirco Musolesi , Cecilia Mascolo, Designing Mobility Models Based on Social Network Theory, Acm Sigmobile Mobile Computing and Communications Review , 2009 .
[37] Mark M. Wilde,et al. Capacities of Quantum Amplifier Channels , 2016, ArXiv.
[38] S. Lloyd,et al. Multimode quantum entropy power inequality , 2014, 1408.6410.
[39] Zoran Cvetkovic. Information Theory and Applications Workshop , 2006 .
[40] A. Holevo. Gaussian optimizers and the additivity problem in quantum information theory , 2015, 1501.00652.
[41] G. Illies,et al. Communications in Mathematical Physics , 2004 .
[42] J. Gordon,et al. Quantum Effects in Communications Systems , 1962, Proceedings of the IRE.
[43] A. Holevo,et al. Majorization and additivity for multimode bosonic Gaussian channels , 2014, 1405.4066.
[44] A. Holevo. Multiplicativity of p-norms of completely positive maps and the additivity problem in quantum information theory , 2006 .
[45] Saikat Guha,et al. Classical Information Capacity of the Bosonic Broadcast Channel , 2007, 2007 IEEE International Symposium on Information Theory.
[46] Saikat Guha,et al. Information trade-offs for optical quantum communication , 2012, Physical review letters.