Intragranular nucleation of tetrahedral precipitates and discontinuous precipitation in Cu-5wt%Ag

[1]  Ying Shirley Meng,et al.  Three-dimensional nanoscale characterisation of materials by atom probe tomography , 2018 .

[2]  M. Ortiz,et al.  An analytical model of interfacial energy based on a lattice-matching interatomic energy , 2016 .

[3]  Y. Champion,et al.  Modified strain rate regime in ultrafine grained copper with silver micro-alloying , 2016 .

[4]  Ke Han,et al.  Simultaneously increasing strength and electrical conductivity in nanostructured Cu–Ag composite , 2016 .

[5]  Williams Lefebvre,et al.  Atom Probe Tomography : Put Theory Into Practice , 2016 .

[6]  A. Matsuo,et al.  Development of High Strength-High Conductivity Cu-6 wt% Ag Alloy for High Field Magnet , 2016 .

[7]  X. Sauvage,et al.  The influence of size on the composition of nano-precipitates in coherent precipitation , 2014 .

[8]  J. Freudenberger,et al.  Nucleation and growth mechanism of Ag precipitates in a CuAgZr alloy , 2014 .

[9]  L. Schultz,et al.  Dynamic recrystallisation and precipitation behaviour of high strength and highly conducting Cu–Ag–Zr-alloys , 2014 .

[10]  D. Raabe,et al.  Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials , 2010 .

[11]  Joachim Rösler,et al.  Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites , 2007 .

[12]  L. Schultz,et al.  Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu–7 wt.%Ag alloys , 2006 .

[13]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[14]  Y. Haddad,et al.  Mechanical behaviour of engineering materials , 2000 .

[15]  J. Perepezko,et al.  The ag-cu (silver-copper) system , 1993 .

[16]  P. Wynblatt,et al.  A Monte Carlo study of the structur and composition of (001) semicoherent interphase boundaries in CuAgAu alloys , 1991 .

[17]  L. Karlsson,et al.  Overview no. 63 Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—I. Large scale segregation behaviour , 1988 .

[18]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[19]  J. Murray Calculations of Stable and Metastable Equilibrium Diagrams of the Ag-Cu and Cd-Zn Systems , 1984 .

[20]  S. H. Goods,et al.  Overview No. 1: The nucleation of cavities by plastic deformation , 1979 .

[21]  R. Fournelle,et al.  The genesis of the cellular precipitation reaction , 1972 .

[22]  R. W. Siegel,et al.  On the growth of annealing of stacking-fault tetrahedra in gold , 1972 .

[23]  R. Räty,et al.  Precipitation associated with the growth of stacking faults in copper–silver alloys , 1968 .

[24]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[25]  K. M. Koliwad,et al.  Morse-Potential Evaluation of Second- and Third-Order Elastic Constants of Some Cubic Metals , 1967 .

[26]  K. Tu,et al.  Morphology of cellular precipitation of tin from lead-tin bicrystals , 1967 .

[27]  John W. Cahn,et al.  On spinodal decomposition in cubic crystals , 1962 .

[28]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[29]  J. C. Fisher,et al.  The influence of grain boundaries on the nucleation of secondary phases , 1955 .