Direct Point Cloud Visualization Using T-spline with Edge Detection

This article presents a hybrid method for a processing of a cloud point. Proposed method is suitable for reverse engineering where the need of precise model representation is essential. Our method is composed of mathematical representation using T-spline surfaces and edge extraction using k-neighborhood and Gauss mapping. The advantages of this method that we are able to find mathematical expression of the model where modification of parameters expresses the edges directly.

[1]  Carl T. Haas,et al.  State of research in automatic as-built modelling , 2015, Adv. Eng. Informatics.

[2]  Suya You,et al.  Urban Site Modeling from LiDAR , 2003, ICCSA.

[3]  Brian Curless,et al.  From range scans to 3D models , 1999, COMG.

[4]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[5]  Vivek Verma,et al.  3D Building Detection and Modeling from Aerial LIDAR Data , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Suya You,et al.  Automatic 3D Industrial Point Cloud Classification and Modeling , 2015 .

[7]  Tino Weinkauf,et al.  Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods , 2009 .

[8]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[9]  Hans Hagen,et al.  Sharp feature detection in point clouds , 2010, 2010 Shape Modeling International Conference.

[10]  Karel Horák,et al.  Fusion of 3D Model and Uncalibrated Stereo Reconstruction , 2015, MENDEL.

[11]  Stefan Gumhold,et al.  Feature Extraction From Point Clouds , 2001, IMR.

[12]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[13]  Dirk Roose,et al.  Detection of closed sharp edges in point clouds using normal estimation and graph theory , 2007, Comput. Aided Des..

[14]  Lei Liu,et al.  Weighted T-splines with application in reparameterizing trimmed NURBS surfaces , 2015 .

[15]  Baining Guo,et al.  Surface reconstruction: from points to splines , 1997, Comput. Aided Des..

[16]  Alois Knoll,et al.  Object detection using boundary representations of primitive shapes , 2015, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[17]  Markus H. Gross,et al.  Multiresolution feature extraction for unstructured meshes , 2001, Proceedings Visualization, 2001. VIS '01..

[18]  Wolfram Burgard,et al.  Point feature extraction on 3D range scans taking into account object boundaries , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  Florent Lafarge,et al.  Creating Large-Scale City Models from 3D-Point Clouds: A Robust Approach with Hybrid Representation , 2012, International Journal of Computer Vision.

[20]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[21]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[22]  Patricio A. Vela,et al.  Detecting, Fitting, and Classifying Surface Primitives for Infrastructure Point Cloud Data , 2013 .

[23]  Carl T. Haas,et al.  State of research in automatic as-built modelling , 2015, Adv. Eng. Informatics.

[24]  Marco Attene,et al.  Sharpen&Bend: recovering curved sharp edges in triangle meshes produced by feature-insensitive sampling , 2005, IEEE Transactions on Visualization and Computer Graphics.

[25]  Konrad Polthier,et al.  Smooth feature lines on surface meshes , 2005, SGP '05.

[26]  Dalibor Martišek,et al.  Relation between algebraic and geometric view on nurbs tensor product surfaces , 2010 .

[27]  Robert L. Scot Drysdale,et al.  A comparison of sequential Delaunay triangulation algorithms , 1995, SCG '95.

[28]  Georgios Stylianou,et al.  Shape Feature Extraction , 2003 .

[29]  Jing Huang,et al.  Automatic 3D industrial point cloud modeling and recognition , 2015, 2015 14th IAPR International Conference on Machine Vision Applications (MVA).