Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models

We study the chromatic polynomial PG(q) for m× n square- and triangular-lattice strips of widths 2≤ m ≤ 8 with cyclic boundary conditions. This polynomial gives the zero-temperature limit of the partition function for the antiferromagnetic q-state Potts model defined on the lattice G. We show how to construct the transfer matrix in the Fortuin–Kasteleyn representation for such lattices and obtain the accumulation sets of chromatic zeros in the complex q-plane in the limit n→∞. We find that the different phases that appear in this model can be characterized by a topological parameter. We also compute the bulk and surface free energies and the central charge.

[1]  R. Griffiths,et al.  Density of Zeros on the Lee-Yang Circle for Two Ising Ferromagnets , 1971 .

[2]  B. Duplantier,et al.  Exact critical properties of two-dimensional dense self-avoiding walks , 1987 .

[3]  Shu-Chiuan Chang,et al.  Ground state entropy of the Potts antiferromagnet on strips of the square lattice , 2001 .

[4]  Shan-Ho Tsai,et al.  Exact partition functions for Potts antiferromagnets on cyclic lattice strips , 1999 .

[5]  R. Shrock,et al.  Transfer matrices for the zero-temperature Potts antiferromagnet on cyclic and Möbius lattice strips , 2004, cond-mat/0404373.

[6]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[7]  J. Cardy,et al.  Conformal invariance and the Yang-Lee edge singularity in two dimensions. , 1985, Physical review letters.

[8]  The antiferromagnetic transition for the square-lattice Potts model , 2005, cond-mat/0512058.

[9]  Jesper Lykke Jacobsen,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. II. Extended Results for Square-Lattice Chromatic Polynomial , 2001 .

[10]  C. Itzykson,et al.  Conformal Invariance of Nonunitary 2d-Models. , 1986 .

[11]  E. Surrey,et al.  Characterisation of a microwave-induced argon plasma , 1987 .

[12]  A. McKane,et al.  Critical exponents for the percolation problem and the Yang-Lee edge singularity , 1981 .

[13]  Bernard Nienhuis,et al.  Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .

[14]  J. Cardy,et al.  Finite-size dependence of the free energy in two-dimensional critical systems , 1988 .

[15]  Giorgio Parisi,et al.  Critical Behavior of Branched Polymers and the Lee-Yang Edge Singularity , 1981 .

[16]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. I. General Theory and Square-Lattice Chromatic Polynomial , 2001 .

[17]  Shu-Chiuan Chang,et al.  Ground State Entropy of the Potts Antiferromagnet on Triangular Lattice Strips , 2001 .

[18]  Vladimir Privman,et al.  Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .

[19]  Shu-Chiuan Chang,et al.  Structural properties of Potts model partition functions and chromatic polynomials for lattice strips , 2001 .

[20]  R. Baxter Critical antiferromagnetic square-lattice Potts model , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  R. J. Baxter,et al.  Colorings of a Hexagonal Lattice , 1970 .

[22]  V. Privman Finite-Size Scaling Theory , 1990 .

[23]  R. M. Damerell,et al.  Recursive families of graphs , 1972 .

[24]  S. Todo Transfer-Matrix Study Of Negative-Fugacity Singularity Of Hard-Core Lattice Gas , 1999 .

[25]  Douglas R. Woodall The largest real zero of the chromatic polynomial , 1997, Discret. Math..

[26]  Hubert Saleur,et al.  Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups , 1990 .

[27]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[28]  V. Pasquier,et al.  Common structures between finite systems and conformal field theories through quantum groups , 1990 .

[29]  Michael E. Fisher,et al.  Yang-Lee Edge Singularity and ϕ 3 Field Theory , 1978 .

[30]  Baram,et al.  Universality of the cluster integrals of repulsive systems. , 1987, Physical review. A, General physics.

[31]  Y. Shapir New relations between the monomer-dimer and the Yang-Lee models , 1982 .

[32]  V. Pasquier,et al.  Lattice derivation of modular invariant partition functions on the torus , 1987 .

[33]  Wang,et al.  Finite-size interaction amplitudes and their universality: Exact, mean-field, and renormalization-group results. , 1986, Physical review. B, Condensed matter.

[34]  Marc Noy,et al.  Recursively constructible families of graphs , 2004, Adv. Appl. Math..

[35]  John Z. Imbrie,et al.  Branched polymers and dimensional reduction , 2001 .

[36]  J. Cardy,et al.  Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. , 1986, Physical review letters.

[37]  Suzuki,et al.  Exact results for Hamiltonian walks from the solution of the fully packed loop model on the honeycomb lattice. , 1994, Physical review letters.

[38]  M. Fisher,et al.  Identity of the universal repulsive-core singularity with Yang-Lee edge criticality. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  General structural results for Potts model partition functions on lattice strips , 2002, cond-mat/0201223.

[40]  Anthony J. Guttmann,et al.  COMMENT: Comment on 'The exact location of partition function zeros, a new method for statistical mechanics' , 1987 .

[41]  Alan D. Sokal,et al.  Spanning Forests and the q-State Potts Model in the Limit q →0 , 2005 .

[42]  M. Fisher,et al.  Yang-Lee Edge Singularities at High Temperatures , 1979 .

[43]  Deepak Dhar Exact Solution of a Directed-Site Animals-Enumeration Problem in three Dimensions. , 1983 .

[44]  R. Baxter Potts model at the critical temperature , 1973 .

[46]  D. Poland On the universality of the nonphase transition singularity in hard-particle systems , 1984 .

[47]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. III. Triangular-Lattice Chromatic Polynomial , 2002, cond-mat/0204587.

[48]  R. Baxter Three‐Colorings of the Square Lattice: A Hard Squares Model , 1970 .

[49]  R. Baxter,et al.  Triangular Potts model at its transition temperature, and related models , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  M. Fisher,et al.  The universal repulsive‐core singularity and Yang–Lee edge criticality , 1995 .

[51]  H. Saleur,et al.  The antiferromagnetic Potts model in two dimensions: Berker-Kadanoff phase, antiferromagnetic transition, and the role of Beraha numbers , 1991 .

[52]  George E. Andrews,et al.  Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities , 1984 .