Smooth Quantile‐Based Modeling Of Brand Sales, Price And Promotional Effects From Retail Scanner Panels

SUMMARY Semiparametric quantile regression is employed to flexibly estimate sales response for frequently purchased consumer goods. Using retail store‐level data, we compare the performance of models with and without monotonic smoothing for fit and prediction accuracy. We find that (a) flexible models with monotonicity constraints imposed on price effects dominate both in‐sample and out‐of‐sample comparisons while being robust even at the boundaries of the price distribution when data is sparse; (b) quantile‐based confidence intervals are much more accurate compared to least‐squares‐based intervals; (c) specifications reflecting that managers may not have exact knowledge about future competitive pricing perform extremely well. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[2]  Dominique M. Hanssens,et al.  Market Response Models: Econometric and Time Series Analysis , 1989 .

[3]  D. Bunn,et al.  A Quantile Regression Approach to Generating Prediction Intervals , 1999 .

[4]  Andreas Brezger,et al.  Monotonic Regression Based on Bayesian P–Splines , 2008 .

[5]  Pin T. Ng,et al.  Quantile splines with several covariates , 1999 .

[6]  V. Srinivasan,et al.  Asymmetric and Neighborhood Cross-Price Effects: Some Empirical Generalizations , 1999 .

[7]  Stephen Portnoy,et al.  Bivariate quantile smoothing splines , 1998 .

[8]  Xuming He,et al.  Monotone B-Spline Smoothing , 1998 .

[9]  I. W. Wright Splines in Statistics , 1983 .

[10]  José A.F. Machado,et al.  Robust Model Selection and M-Estimation , 1993, Econometric Theory.

[11]  Harald Hruschka,et al.  Relevance of functional flexibility for heterogeneous sales response models: A comparison of parametric and semi-nonparametric models , 2006, Eur. J. Oper. Res..

[12]  Kirthi Kalyanam,et al.  Estimating Irregular Pricing Effects: A Stochastic Spline Regression Approach , 1998 .

[13]  James W. Taylor,et al.  Forecasting daily supermarket sales using exponentially weighted quantile regression , 2007, Eur. J. Oper. Res..

[14]  P. Goldberg Product Differentiation and Oligopoly in International Markets: The Case of the U.S. Automobile Industry , 1995 .

[15]  Peter E. Rossi,et al.  Estimating Price Elasticities with Theory-Based Priors , 1999 .

[16]  Harald J. van Heerde,et al.  Semiparametric Analysis to Estimate the Deal Effect Curve , 2001 .

[17]  Steven T. Berry,et al.  Automobile Prices in Market Equilibrium , 1995 .

[18]  Steven T. Berry Estimating Discrete-Choice Models of Product Differentiation , 1994 .

[19]  Andreas Brezger,et al.  Monotonic Regression Based on Bayesian P-Splines: An Application to Estimating Price Response Functions from Store-Level Scanner Data , 2008 .

[20]  James W. Taylor Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall , 2008 .

[21]  Harry Haupt,et al.  Beyond mean estimates of price and promotional effects in scanner-panel sales–response regression , 2012 .

[22]  P. Eilers,et al.  Quantile regression with monotonicity restrictions using P-splines and the L1-norm , 2006 .

[23]  Robert E. McCulloch,et al.  Account-Level Modeling for Trade Promotion: An Application of a Constrained Parameter Hierarchical Model , 1999 .

[24]  Roger Koenker,et al.  Additive Models for Quantile Regression: An Analysis of Risk Factors for Malnutrition in India , 2010 .

[25]  Stephen Portnoy,et al.  Local asymptotics for quantile smoothing splines , 1997 .

[26]  Roger Koenker,et al.  Inequality constrained quantile regression , 2005 .

[27]  Rick L. Andrews,et al.  Estimating the SCAN*PRO Model of Store Sales: HB, FM or just OLS? , 2008 .

[28]  R. Koenker,et al.  Penalized triograms: total variation regularization for bivariate smoothing , 2004 .

[29]  Robert C. Blattberg,et al.  Shrinkage Estimation of Price and Promotional Elasticities: Seemingly Unrelated Equations , 1991 .

[30]  James W. Taylor A Quantile Regression Approach to Estimating the Distribution of Multiperiod Returns , 1999 .

[31]  Jeffrey S. Racine,et al.  A Consistent Model Specification Test with Mixed Discrete and Continuous Data , 2006 .

[32]  A. Montgomery Creating Micro-Marketing Pricing Strategies Using Supermarket Scanner Data , 1997 .

[33]  Andreas Brezger,et al.  Flexible estimation of price response functions using retail scanner data , 2007 .

[34]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[35]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[36]  Göran Kauermann,et al.  Nonparametric models and their estimation , 2006 .

[37]  S. Wood mgcv:Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation , 2012 .

[38]  D. McFadden,et al.  MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .

[39]  P. Shi,et al.  Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .

[40]  James W. Taylor A Quantile Regression Neural Network Approach to Estimating the Conditional Density of Multiperiod Returns , 2000 .

[41]  R. Koenker Quantile Regression: Name Index , 2005 .