Cell Morphology and Improved Heat Resistance of Microcellular Poly(l-lactide) Foam via Introducing Stereocomplex Crystallites of PLA

The preparation of poly(l-lactic acid) (PLLA) foam with well-defined cell structure and high heat resistance is critical to broaden its applications. In this study, the stereocomplex crystallites (SC) with higher melting point and heat stability were introduced into PLLA foam by melt blending the PLLA with different amounts of poly(d-lactic acid) (PDLA). The crystal structures of pure PLLA and PLLA/PDLA blends formed during the blending and molding process were compared. It was found that no obvious crystallization was detected in pure PLLA, while SC formed in PLLA/PDLA blends. Crystal structure and morphology evolution of PLLA and PLLA/PDLA during the CO2 saturation and foaming process were investigated by combination of DSC, WAXD, FTIR, and SEM techniques. The results suggested SC had a higher melting peak, higher thermal stability, and smaller crystal domain size in relation to the homocrystal of PLLA, and it did not further develop with the CO2 saturation and the foaming processes, while the CO2 satur...

[1]  R. Pantani,et al.  Foam injection molding of poly(lactic acid) with environmentally friendly physical blowing agents , 2014 .

[2]  Dujing Wang,et al.  Tailoring Crystallization: Towards High‐Performance Poly(lactic acid) , 2014, Advanced materials.

[3]  Chul B. Park,et al.  Poly (lactic acid) foaming , 2014 .

[4]  N. Kirby,et al.  Effects of Liquid CO2 Exposure on Semi‐Crystalline Polylactic Acid , 2014 .

[5]  A. Fernyhough,et al.  Expansion and dimensional stability of semi-crystalline polylactic acid foams , 2014 .

[6]  Hongjun Xu,et al.  Preparation and Characterization of High-Melt-Strength Polylactide with Long-Chain Branched Structure through γ-Radiation-Induced Chemical Reactions , 2014 .

[7]  Chul B. Park,et al.  Effect of nucleation and plasticization on the stereocomplex formation between enantiomeric poly(lactic acid)s , 2013 .

[8]  Yaqiong Zhang,et al.  Shear-Induced Nucleation and Morphological Evolution for Bimodal Long Chain Branched Polylactide , 2013 .

[9]  Yaqiong Zhang,et al.  Bimodal architecture and rheological and foaming properties for gamma-irradiated long-chain branched polylactides , 2013 .

[10]  D. Jung,et al.  Microcellular Foaming of Poly(lactic acid)/Silica Nanocomposites in Compressed CO2: Critical Influence of Crystallite Size on Cell Morphology and Foam Expansion , 2013 .

[11]  Yaqiong Zhang,et al.  Rheologically Determined Critical Shear Rates for Shear-Induced Nucleation Rate Enhancements of Poly(lactic acid) , 2013 .

[12]  Donghua Xu,et al.  Exponentially increased nucleation ability for poly(L-lactide) by adding acid-oxidized multiwalled carbon nanotubes with reduced aspect ratios , 2013, Science China Chemistry.

[13]  Chul B. Park,et al.  Poly(lactic acid) crystallization , 2012 .

[14]  Changyu Han,et al.  Isothermal and Nonisothermal Cold Crystallization Behaviors of Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends , 2012 .

[15]  Chul B. Park,et al.  Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes , 2012 .

[16]  Chul B. Park,et al.  The Orientation of Carbon Nanotubes in Poly(ethylene-co-octene) Microcellular Foaming, and Its Suppression Effect on Cell Coalescence , 2012 .

[17]  Chul B. Park,et al.  Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA , 2012 .

[18]  Chul B. Park,et al.  Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity , 2012 .

[19]  Chul B. Park,et al.  Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents , 2012 .

[20]  Chul B. Park,et al.  Crystallization Kinetics of Linear and Long-Chain-Branched Polylactide , 2011 .

[21]  Chul B. Park,et al.  Ultrasonic Irradiation Enhanced Cell Nucleation in Microcellular Poly(lactic Acid): A Novel Approach to Reduce Cell Size Distribution and Increase Foam Expansion , 2011 .

[22]  Howard Wang,et al.  Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. , 2011, ACS applied materials & interfaces.

[23]  Chul B. Park,et al.  Nanosilica Addition Dramatically Improves the Cell Morphology and Expansion Ratio of Polypropylene Heterophasic Copolymer Foams Blown in Continuous Extrusion , 2011 .

[24]  Wei Yu,et al.  Rheological control in foaming polymeric materials: II. Semi-crystalline polymers , 2010 .

[25]  Chul B. Park,et al.  Numerical Investigation of Nucleating-Agent-Enhanced Heterogeneous Nucleation , 2010 .

[26]  F. Maurer,et al.  Thermal Behavior of Poly(l-lactide) Having Low l-Isomer Content of 94% after Compressed CO2 Treatment , 2010 .

[27]  Chul B. Park,et al.  Cell Structure Evolution and the Crystallization Behavior of Polypropylene/Clay Nanocomposites Foams Blown in Continuous Extrusion , 2010 .

[28]  C. Rochas,et al.  New Insights on the strain-induced mesophase of poly(D,L-lactide): in situ WAXS and DSC study of the thermo-mechanical stability , 2010 .

[29]  Y. Ozaki,et al.  PLLA Mesophase and Its Phase Transition Behavior in the PLLA−PEG−PLLA Copolymer As Revealed by Infrared Spectroscopy , 2010 .

[30]  B. D. Favis,et al.  Rheology and extrusion foaming of chain‐branched poly(lactic acid) , 2010 .

[31]  G. Stoclet,et al.  Strain-Induced Molecular Ordering in Polylactide upon Uniaxial Stretching , 2010 .

[32]  Chul B. Park,et al.  A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2 , 2009, International journal of molecular sciences.

[33]  B. D. Favis,et al.  Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide , 2009 .

[34]  M. Sumita,et al.  Crystalline Structure and Morphology of Poly(l-lactide) Formed under High-Pressure CO2 , 2008 .

[35]  L. Lim,et al.  Processing technologies for poly(lactic acid) , 2008 .

[36]  J. Jun,et al.  Study of Thermoplastic PLA Foam Extrusion , 2008 .

[37]  Jian Yu,et al.  Foaming behavior of isotactic polypropylene in supercritical CO2 influenced by phase morphology via chain grafting , 2008 .

[38]  L. Matuana Solid state microcellular foamed poly(lactic acid): morphology and property characterization. , 2008, Bioresource technology.

[39]  Y. Inoue,et al.  Enthalpy Relaxation and Embrittlement of Poly(l-lactide) during Physical Aging , 2007 .

[40]  M. Huneault,et al.  Effect of nucleation and plasticization on the crystallization of poly(lactic acid) , 2007 .

[41]  Jöns Hilborn,et al.  Poly(lactic acid) fiber : An overview , 2007 .

[42]  B. Haworth,et al.  Crystallization effects on autoclave foaming of polycarbonate using supercritical carbon dioxide , 2006 .

[43]  H. Münstedt,et al.  Rheological properties and foaming behavior of polypropylenes with different molecular structures , 2006 .

[44]  P. Whitfield,et al.  Layered open pore poly(L-lactic acid) nanomorphology. , 2006, Biomacromolecules.

[45]  Masami Okamoto,et al.  Foam processing and cellular structure of polylactide-based nanocomposites , 2006 .

[46]  E. Piorkowska,et al.  Plasticization of poly(L-lactide) with poly(propylene glycol). , 2006, Biomacromolecules.

[47]  Marc A. Hillmyer,et al.  Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites , 2006 .

[48]  Matthias Wessling,et al.  Gas foaming of segmented poly(ester amide) films , 2005 .

[49]  S. Hsu,et al.  Morphological study on thermal shrinkage and dimensional stability associated with oriented poly(lactic acid) , 2005 .

[50]  D. Pochan,et al.  Crystallization Behavior of Poly(l-lactic acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy , 2005 .

[51]  J. Saja,et al.  Comparative study on the lamellar structure of polyethylene foams , 2005 .

[52]  Y. Ozaki,et al.  Infrared Spectroscopic Study of CH3···OC Interaction during Poly(l-lactide)/Poly(d-lactide) Stereocomplex Formation , 2005 .

[53]  H. Tsuji,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. , 2004, Biomacromolecules.

[54]  H. Yamane,et al.  Poly(D-lactic acid) as a rheological modifier of poly(L-lactic acid): Shear and biaxial extensional flow behavior , 2004 .

[55]  T. Asakura,et al.  Helix Distortion and Crystal Structure of the α-Form of Poly(l-lactide) , 2003 .

[56]  S. Ray,et al.  Crystallization Behavior and Morphology of Biodegradable Polylactide/ Layered Silicate Nanocomposite , 2003 .

[57]  Marc S. Lavine,et al.  Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension , 2003 .

[58]  A. Södergård,et al.  Properties of lactic acid based polymers and their correlation with composition , 2002 .

[59]  C. Alemán,et al.  Crystal Structure of the α-Form of Poly(l-lactide) , 2001 .

[60]  L. Torres-Martínez,et al.  A Study of the Crystallization of ZrO , 2001 .

[61]  Y. Ikada,et al.  Epitaxial crystallization and crystalline polymorphism of polylactides , 2000 .

[62]  H. Masuoka,et al.  CO2-Induced stereocomplex formation of stereoregular poly(methyl methacrylate) and microcellular foams , 2000 .

[63]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films , 1999 .

[64]  B. Lotz,et al.  Triangular Polymer Single Crystals: Stereocomplexes, Twins, and Frustrated Structures , 1997 .

[65]  Yoshito Ikada,et al.  Crystallization from the melt of poly(lactide)s with different optical purities and their blends , 1996 .

[66]  Karl A. Seeler,et al.  Experimental Characterization of the Tensile Behavior of Microcellular Polycarbonate Foams , 1994 .

[67]  G. Hsiue,et al.  Gas sorption in side-chain liquid crystalline polymers , 1994 .

[68]  Y. Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt , 1993 .

[69]  Y. Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectroscopy , 1992 .

[70]  Y. Ikada,et al.  Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide) , 1991 .

[71]  A. Pennings,et al.  Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers , 1990 .

[72]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactides) , 1987 .

[73]  P. de Santis,et al.  Molecular conformation of poly(S‐lactic acid) , 1968, Biopolymers.

[74]  E. Pollet,et al.  Crystallization in Poly(l-lactide)-b-poly(∊-caprolactone) Double Crystalline Diblock Copolymers: A Study Using X-ray Scattering, Differential Scanning Calorimetry, and Polarized Optical Microscopy , 2005 .

[75]  Y. P. Handa,et al.  Effect of compressed CO on phase transitions and polymorphism in syndiotactic polystyrene , 2022 .