Diagonal Markowitz Scheme with Local Symmetrization

We describe a fill‐reducing ordering algorithm for sparse, nonsymmetric LU factorizations, where the pivots are restricted to the diagonal and are selected greedily. The ordering algorithm uses only the structural information. Most of the existing methods are based on some type of symmetrization of the original matrix. Our algorithm exploits the nonsymmetric structure of the given matrix as much as possible. The new algorithm is thus more complex than classical symmetric orderings, but we show that our algorithm can be implemented in space bounded by the number of nonzero entries in the original matrix, and has the same time complexity as the analogous algorithms for symmetric matrices. We provide numerical experiments to demonstrate the ordering quality and the runtime of the new ordering algorithm.

[1]  Iain S. Duff,et al.  The Rutherford-Boeing sparse matrix collection , 1997 .

[2]  Joseph W. H. Liu,et al.  Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.

[3]  Padma Raghavan,et al.  Performance of Greedy Ordering Heuristics for Sparse Cholesky Factorization , 1999, SIAM J. Matrix Anal. Appl..

[4]  Iain S. Duff,et al.  The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[5]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[6]  Iain S. Duff,et al.  On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..

[7]  G. Pagallo,et al.  A bipartite quotient graph model for unsymmetric matrices , 1983 .

[8]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .

[9]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[10]  Patrick R. Amestoy,et al.  Analysis and comparison of two general sparse solvers for distributed memory computers , 2001, TOMS.

[11]  D. Rose,et al.  Algorithmic aspects of vertex elimination on directed graphs. , 1975 .

[12]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[13]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[14]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[15]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[16]  Xiaoye S. Li,et al.  Unsymmetric Ordering Using A Constrained Markowitz Scheme , 2007, SIAM J. Matrix Anal. Appl..

[17]  A. Neumaier,et al.  A NEW PIVOTING STRATEGY FOR GAUSSIAN ELIMINATION , 1996 .

[18]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[19]  Patrick Amestoy,et al.  Vectorization of a Multiprocessor Multifrontal Code , 1989, Int. J. High Perform. Comput. Appl..

[20]  S. Eisenstat,et al.  Node Selection Strategies for Bottom-Up Sparse Matrix Ordering , 1998, SIAM J. Matrix Anal. Appl..

[21]  Patrick Amestoy,et al.  An Unsymmetrized Multifrontal LU Factorization , 2000, SIAM J. Matrix Anal. Appl..