Max-Cut Parameterized above the Edwards-Erdős Bound
暂无分享,去创建一个
[1] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[2] Gregory Gutin,et al. Note on maximal bisection above tight lower bound , 2010, Inf. Process. Lett..
[3] Shankar M. Venkatesan,et al. Approximation and Intractability Results for the Maximum Cut Problem and its Variants , 1991, IEEE Trans. Computers.
[4] Subhash Khot,et al. SDP gaps and UGC-hardness for MAXCUTGAIN , 2006, IEEE Annual Symposium on Foundations of Computer Science.
[5] Meena Mahajan,et al. Parameterizing above or below guaranteed values , 2009, J. Comput. Syst. Sci..
[6] Moses Charikar,et al. Maximizing quadratic programs: extending Grothendieck's inequality , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[7] Michael R. Fellows,et al. Simultaneously Satisfying Linear Equations Over F_2: MaxLin2 and Max-r-Lin2 Parameterized Above Average , 2011, FSTTCS.
[8] Somnath Sikdar,et al. PARAMETERIZING FROM THE EXTREMES: FEASIBLE PARAMETERIZATIONS OF SOME NP-OPTIMIZATION PROBLEMS , 2010 .
[9] Alex Scott,et al. Better bounds for Max Cut , 2002 .
[10] Russell Impagliazzo,et al. On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..
[11] N. Alon. Bipartite subgraphs (Final Version; appeared in Combinatorica 16 (1996), 301-311.) , 1996 .
[12] Zs. Tuza,et al. Triangle-free partial graphs and edge covering theorems , 1982, Discret. Math..
[13] Hanno Lefmann,et al. A combinatorial design approach to MAXCUT , 1996 .
[14] P. Erdős,et al. COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 4 . COMBINATORIAL THEORY AND ITS APPLICATIONS , 1969 .
[15] S. Poljak,et al. A Polynomial Algorithm for Constructing a Large Bipartite Subgraph, with an Application to a Satisfiability Problem , 1982, Canadian Journal of Mathematics.
[16] C. S. Edwards. Some Extremal Properties of Bipartite Subgraphs , 1973, Canadian Journal of Mathematics.
[17] Zsolt Tuza,et al. Linear-Time Algorithms for the Max Cut Problem , 1993, Comb. Probab. Comput..
[18] Yoshiharu Kohayakawa,et al. The size of the largest bipartite subgraphs , 1997, Discret. Math..
[19] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[20] Meena Mahajan,et al. Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..
[21] Michael R. Fellows,et al. On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..
[22] Liming Cai,et al. On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..
[23] S. C. Locke. Maximum k-colorable subgraphs , 1982, J. Graph Theory.
[24] Michael R. Fellows,et al. Simultaneously Satisfying Linear Equations Over $\mathbb{F}_2$: MaxLin2 and Max-$r$-Lin2 Parameterized Above Average , 2011 .