Max-Cut Parameterized above the Edwards-Erdős Bound

We study the boundary of tractability for the Max-Cut problem in graphs. Our main result shows that Max-Cut above the Edwards-Erdős bound is fixed-parameter tractable: we give an algorithm that for any connected graph with n vertices and m edges finds a cut of size $$ \frac{m}{2} + \frac{n-1}{4} + k $$ in time 2O(k)·n4, or decides that no such cut exists. This answers a long-standing open question from parameterized complexity that has been posed a number of times over the past 15 years. Our algorithm is asymptotically optimal, under the Exponential Time Hypothesis, and is strengthened by a polynomial-time computable kernel of polynomial size.

[1]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[2]  Gregory Gutin,et al.  Note on maximal bisection above tight lower bound , 2010, Inf. Process. Lett..

[3]  Shankar M. Venkatesan,et al.  Approximation and Intractability Results for the Maximum Cut Problem and its Variants , 1991, IEEE Trans. Computers.

[4]  Subhash Khot,et al.  SDP gaps and UGC-hardness for MAXCUTGAIN , 2006, IEEE Annual Symposium on Foundations of Computer Science.

[5]  Meena Mahajan,et al.  Parameterizing above or below guaranteed values , 2009, J. Comput. Syst. Sci..

[6]  Moses Charikar,et al.  Maximizing quadratic programs: extending Grothendieck's inequality , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[7]  Michael R. Fellows,et al.  Simultaneously Satisfying Linear Equations Over F_2: MaxLin2 and Max-r-Lin2 Parameterized Above Average , 2011, FSTTCS.

[8]  Somnath Sikdar,et al.  PARAMETERIZING FROM THE EXTREMES: FEASIBLE PARAMETERIZATIONS OF SOME NP-OPTIMIZATION PROBLEMS , 2010 .

[9]  Alex Scott,et al.  Better bounds for Max Cut , 2002 .

[10]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[11]  N. Alon Bipartite subgraphs (Final Version; appeared in Combinatorica 16 (1996), 301-311.) , 1996 .

[12]  Zs. Tuza,et al.  Triangle-free partial graphs and edge covering theorems , 1982, Discret. Math..

[13]  Hanno Lefmann,et al.  A combinatorial design approach to MAXCUT , 1996 .

[14]  P. Erdős,et al.  COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 4 . COMBINATORIAL THEORY AND ITS APPLICATIONS , 1969 .

[15]  S. Poljak,et al.  A Polynomial Algorithm for Constructing a Large Bipartite Subgraph, with an Application to a Satisfiability Problem , 1982, Canadian Journal of Mathematics.

[16]  C. S. Edwards Some Extremal Properties of Bipartite Subgraphs , 1973, Canadian Journal of Mathematics.

[17]  Zsolt Tuza,et al.  Linear-Time Algorithms for the Max Cut Problem , 1993, Comb. Probab. Comput..

[18]  Yoshiharu Kohayakawa,et al.  The size of the largest bipartite subgraphs , 1997, Discret. Math..

[19]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[20]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[21]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[22]  Liming Cai,et al.  On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..

[23]  S. C. Locke Maximum k-colorable subgraphs , 1982, J. Graph Theory.

[24]  Michael R. Fellows,et al.  Simultaneously Satisfying Linear Equations Over $\mathbb{F}_2$: MaxLin2 and Max-$r$-Lin2 Parameterized Above Average , 2011 .