A two-node curved axisymmetric shell element based on coupled displacement field
暂无分享,去创建一个
[1] G. A. Miles,et al. A curved element approximation in the analysis of axi-symmetric thin shells , 1970 .
[2] O. C. Zienkiewicz,et al. A simple and efficient element for axisymmetric shells , 1977 .
[3] P. E. Grafton,et al. Analysis of Axisymmetrical Shells by the Direct Stiffness Method , 1963 .
[4] David M. Potts,et al. CURVED MINDLIN BEAM AND AXI-SYMMETRIC SHELL ELEMENTS : A NEW APPROACH , 1990 .
[5] Gangan Prathap,et al. A field-consistent two-noded curved axisymmetric shell element , 1986 .
[6] A. Tessler. An efficient, conforming axisymmetric shell element including transverse shear and rotary inertia , 1982 .
[7] E. P. Popov,et al. A refined curved element for thin shells of revolution , 1971 .
[8] J. A. Stricklin,et al. Improvements on the analysis of shells of revolution by the matrix displacement method. , 1966 .
[9] S. B. Dong,et al. On a hierarchy of conforming timoshenko beam elements , 1981 .
[10] G. A. Mohr. Application of penalty functions to a curved isoparametric axisymmetric thick shell element , 1982 .
[11] J. Z. Zhu,et al. The finite element method , 1977 .
[12] T. Belytschko,et al. Shear and membrane locking in curved C0 elements , 1983 .
[13] Alexander Tessler,et al. Resolving membrane and shear locking phenomena in curved shear‐deformable axisymmetric shell elements , 1988 .
[14] Gangan Prathap,et al. A field consistent three‐noded quadratic curved axisymmetric shell element , 1986 .
[15] D. R. Strome,et al. Direct stiffness method analysis of shells of revolution utilizing curved elements. , 1966 .