A scalable deep learning platform for identifying geologic features from seismic attributes

The modern requirement for analyzing and interpreting ever-larger volumes of seismic data to identify prospective hydrocarbon prospects within stringent time deadlines represents an ongoing challenge in petroleum exploration. To provide a computer-based aid in addressing this challenge, we have developed a “big data” platform to facilitate the work of geophysicists in interpreting and analyzing large volumes of seismic data with scalable performance. We have constructed this platform on a modern distributed-memory infrastructure, providing a customized seismic analytics software development toolkit, and a Web-based graphical workflow interface along with a remote 3D visualization capability. These support the management of seismic data volumes, attributes processing, seismic analytics model development, workflow execution, and 3D volume visualization on a scalable, distributed computing platform. Early experiences show that computationally demanding deep learning methods such as convolutional neural netwo...