A mixed interface finite element for cohesive zone models

Abstract The phenomena of crack initiation, propagation and ultimate fracture are studied here under the following assumptions: (i) the crack law is modelled by means of a cohesive zone model and (ii) the crack paths are postulated a priori. In this context, a variational formulation is proposed which relies on an augmented Lagrangian. A mixed interface finite element is introduced to discretise the crack paths, the degrees of freedom of which consist in the displacement on both crack lips and the density of cohesive forces. This enables an exact treatment of multi-valued cohesive laws (e.g. initial adhesion, contact conditions, possible rigid unloading, etc.), without penalty regularisation. A special attention is paid to the convergence with mesh-refinement, i.e. the well-posedness of the problem, on the basis of theoretical results of contact mechanics and some complementary numerical investigations. Fulfilment of the LBB condition is the key factor to gain the desired properties. Moreover, it is shown that the integration of the constitutive law admits a unique solution as soon as some condition on the augmented Lagrangian is enforced. Finally, a 3D simulation shows the applicability to practical engineer problems, including in particular the robustness of the formulation and its compatibility with classical solution algorithms (Newton method, line-search, path-following techniques).

[1]  Tod A. Laursen,et al.  A mortar segment-to-segment frictional contact method for large deformations , 2003 .

[2]  Georg Stadler,et al.  Path-following and augmented Lagrangian methods for contact problems in linear elasticity , 2007 .

[3]  Milan Jirásek,et al.  Embedded crack model: I. Basic formulation , 2001 .

[4]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[5]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[6]  L. J. Sluys,et al.  On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture , 2002 .

[7]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[8]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[9]  J. Laverne Formulation énergétique de la rupture par des modèles de forces cohésives : considérations théoriques et implantations numériques , 2004 .

[10]  G. Piero,et al.  Macro- and micro-cracking in one-dimensional elasticity , 2001 .

[11]  F. Fraternali Free discontinuity finite element models in two-dimensions for in-plane crack problems , 2007 .

[12]  Milan Jirásek,et al.  Embedded crack model. Part II: combination with smeared cracks , 2001 .

[13]  Samuel Geniaut,et al.  A stable 3D contact formulation using X-FEM , 2007 .

[14]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[15]  Gerhard A. Holzapfel,et al.  3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths , 2006 .

[16]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[17]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[18]  A. Huespe,et al.  A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM , 2006 .

[19]  A. Huespe,et al.  Theoretical and computational issues in modelling material failure in strong discontinuity scenarios , 2004 .

[20]  Ahmed Benallal,et al.  Gradient constitutive relations: numerical aspects and application to gradient damage , 2005 .

[21]  Yves Wadier,et al.  Mécanique de la rupture fragile en présence de plasticité : modélisation de la fissure par une entaille , 2004 .

[22]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[23]  Julien Réthoré,et al.  An energy‐conserving scheme for dynamic crack growth using the eXtended finite element method , 2005 .

[24]  J. Marigo,et al.  Initiation and propagation of fracture in the models of Griffith and Barenblatt , 2004 .

[25]  Dominique Leguillon,et al.  Strength or toughness? A criterion for crack onset at a notch , 2002 .

[26]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[27]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[28]  Jean-Jacques Marigo,et al.  Initiation of cracks with cohesive force models: a variational approach , 2006 .

[29]  P. Badel,et al.  A new path‐following constraint for strain‐softening finite element simulations , 2004 .

[30]  Milan Jirásek,et al.  Comparative study on finite elements with embedded discontinuities , 2000 .

[31]  Stephen A. Vavasis,et al.  Obtaining initially rigid cohesive finite element models that are temporally convergent , 2005 .

[32]  Osvaldo L. Manzoli,et al.  A general technique to embed non-uniform discontinuities into standard solid finite elements , 2006 .

[33]  Pierre Ladevèze,et al.  Mécanique non linéaire des structures , 1997 .

[34]  R. Borst Numerical aspects of cohesive-zone models , 2003 .

[35]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[36]  Paul Steinmann,et al.  A hybrid discontinuous Galerkin/interface method for the computational modelling of failure , 2004 .

[37]  A. Curnier,et al.  A model of adhesion coupled to contact and friction , 2003 .