Polarimetric analysis of multi-temporal RADARSAT-2 SAR images for wheat monitoring and mapping

A full understanding of the polarimetric characteristics of wheat fields is necessary for the development of a robust methodology for the monitoring and mapping of wheat using quad-polarimetric SAR images. In this study, the polarimetric characteristics and temporal variations of wheat were analysed using a multi-temporal RADARSAT-2 quad-polarimetric dataset from a wheat-growing region of the North China Plain. The backscattering coefficient, the Freeman–Durden decomposition, and the H/A/ decomposition were evaluated as functions of the growth stage and then used for classification. With each wheat growth stage, the volume scattering component ratio increased, whereas the surface scattering component ratio generally decreased. The experimental results indicate that the Freeman–Durden decomposition parameters are sensitive to the wheat growth stage. Moreover, the proposed method for mapping wheat, which combines the backscattering coefficients, polarization decompositions, and the support vector machine (hereafter referred to as BP-SVM), is able to discriminate wheat effectively, with an accuracy of up to 92.92%. This indicates that quad-polarimetric imagery from just one date is sufficient for wheat mapping. The results of this study demonstrate that quad-polarimetric RADARSAT-2 SAR imagery has great potential for the monitoring and mapping of wheat.

[1]  Zhen Li,et al.  Classification and snow line detection for glacial areas using the polarimetric SAR image , 2011 .

[2]  Luis Alonso,et al.  A RADARSAT-2 Quad-Polarized Time Series for Monitoring Crop and Soil Conditions in Barrax, Spain , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Simonetta Paloscia,et al.  Simulating coherent backscattering from crops during the growing cycle , 2002, IEEE Trans. Geosci. Remote. Sens..

[4]  P. Pampaloni,et al.  SAR polarimetric features of agricultural areas , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[5]  Bo Zhang,et al.  Rice Crop Monitoring in South China With RADARSAT-2 Quad-Polarization SAR Data , 2011, IEEE Geoscience and Remote Sensing Letters.

[6]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[7]  Shaun Quegan,et al.  High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval , 2003, IEEE Trans. Geosci. Remote. Sens..

[8]  Simonetta Paloscia,et al.  The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Dirk H. Hoekman,et al.  Unsupervised Full-Polarimetric SAR Data Segmentation as a Tool for Classification of Agricultural Areas , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  Manabu Watanabe,et al.  Growth monitoring and classification of rice fields using multitemporal RADARSAT-2 full-polarimetric data , 2012 .

[12]  Maurice Borgeaud,et al.  Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-1996 , 2000, IEEE Trans. Geosci. Remote. Sens..

[13]  Heather McNairn,et al.  Sensitivity analysis of compact polarimetry parameters to crop growth using simulated RADARSAT-2 SAR data , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[14]  H. Zhang,et al.  Water-yield relations and water-use efficiency of winter wheat in the North China Plain , 1999, Irrigation Science.

[15]  Thuy Le Toan,et al.  Multitemporal C-band radar measurements on wheat fields , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[18]  Simonetta Paloscia,et al.  The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[20]  A. Fung Microwave Scattering and Emission Models and their Applications , 1994 .

[21]  Jinsong Chen,et al.  Application of multi-temporal ENVISAT ASAR data to agricultural area mapping in the Pearl River Delta , 2010 .

[22]  Yong Pang,et al.  Quantitative Evaluation of Polarimetric Classification for Agricultural Crop Mapping , 2007 .

[23]  Fabio Del Frate,et al.  Crop classification using multiconfiguration C-band SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[24]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Sang-Hoon Hong,et al.  Double-Bounce Component in Cross-Polarimetric SAR From a New Scattering Target Decomposition , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Xinwu Li,et al.  Simulation analysis on the relationship between the leaf area index and polarimetric parameters of crops , 2012, Int. J. Digit. Earth.

[27]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[28]  Jean-Claude Souyris,et al.  Support Vector Machine for Multifrequency SAR Polarimetric Data Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Wenjiang Huang,et al.  Predicting winter wheat condition, grain yield and protein content using multi‐temporal EnviSat‐ASAR and Landsat TM satellite images , 2006 .

[30]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[31]  Thuy Le Toan,et al.  Wheat Crop Mapping by Using ASAR AP Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Ling Tong,et al.  Multi-temporal radar backscattering measurement of wheat fields and their relationship with biological variables , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[33]  Urs Wegmüller,et al.  C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Andreas Schmitt,et al.  SAR polarimetric change detection for flooded vegetation , 2013, Int. J. Digit. Earth.

[35]  Jaan Praks,et al.  Alternatives to Target Entropy and Alpha Angle in SAR Polarimetry , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Kamal Sarabandi,et al.  Microwave scattering model for grass blade structures , 1993, IEEE Trans. Geosci. Remote. Sens..

[37]  Kamal Sarabandi,et al.  Electromagnetic scattering from grassland. I. A fully phase-coherent scattering model , 2000, IEEE Trans. Geosci. Remote. Sens..

[38]  Heather McNairn,et al.  Multiyear Crop Monitoring Using Polarimetric RADARSAT-2 Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[40]  W. Salas,et al.  Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China , 2009 .

[41]  Heather McNairn,et al.  The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Yuan Zhang,et al.  Characterizing L-Band Scattering of Paddy Rice in Southeast China With Radiative Transfer Model and Multitemporal ALOS/PALSAR Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Cheng Wang,et al.  Using Stacked Generalization to Combine SVMs in Magnitude and Shape Feature Spaces for Classification of Hyperspectral Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[44]  B. Brisco,et al.  The application of C-band polarimetric SAR for agriculture: a review , 2004 .

[45]  Shaun Quegan,et al.  Modeling microwave interactions with crops and comparison with ERS-2 SAR observations , 2000, IEEE Trans. Geosci. Remote. Sens..