Facile Synthesis of an Extensive Family of Sc2O@C2n (n = 35–47) and Chemical Insight into the Smallest Member of Sc2O@C2(7892)–C70

An extensive family of oxide cluster fullerenes (OCFs) Sc2O@C2n (n = 35–47) has been facilely produced for the first time by introducing CO2 as the oxygen source. Among this family, Sc2O@C70 was identified as the smallest OCF and therefore isolated and characterized by mass spectrometry, 45Sc nuclear magnetic resonance, UV–vis–near-infrared absorption spectroscopy, cyclic voltammetry, and density functional theory calculations. The combined experimental and computational studies reveal a non-isolated pentagon rule isomer Sc2O@C2(7892)–C70 with reversible oxidative behavior and lower bandgap relative to that of Sc2S@C2(7892)–C70, demonstrating a typical example of unexplored OCF and underlining its cluster-dependent electronic properties.

[1]  Edward Van Keuren,et al.  Endohedral fullerenes for organic photovoltaic devices. , 2009, Nature materials.

[2]  Marilyn M. Olmstead,et al.  A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(mu3-O)2@Ih-C80. , 2008, Journal of the American Chemical Society.

[3]  Marilyn M. Olmstead,et al.  Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene--Gd3N@C(s)(39663)-C82. , 2008, Journal of the American Chemical Society.

[4]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[5]  Y. Murata,et al.  Synthesis and properties of endohedral C60 encapsulating molecular hydrogen. , 2006, Journal of the American Chemical Society.

[6]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[7]  Y. Murata,et al.  A Single Molecule of Water Encapsulated in Fullerene C60 , 2011, Science.

[8]  M. Dolg,et al.  Segmented contraction scheme for small-core lanthanide pseudopotential basis sets , 2002 .

[9]  Hideyuki Funasaka,et al.  13C and 139La NMR Studies of La2@C80: First Evidence for Circular Motion of Metal Atoms in Endohedral Dimetallofullerenes , 1997 .

[10]  Shangfeng Yang,et al.  Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C2(5)-C82. , 2014, Inorganic chemistry.

[11]  Zdenek Slanina,et al.  Structural elucidation and regioselective functionalization of an unexplored carbide cluster metallofullerene Sc2C2@C(s)(6)-C82. , 2011, Journal of the American Chemical Society.

[12]  Zujin Shi,et al.  An experimentally observed trimetallofullerene Sm3@I(h)-C80: encapsulation of three metal atoms in a cage without a nonmetallic mediator. , 2013, Journal of the American Chemical Society.

[13]  Richey M. Davis,et al.  Gd3N@C84(OH)x: a new egg-shaped metallofullerene magnetic resonance imaging contrast agent. , 2014, Journal of the American Chemical Society.

[14]  Steven Stevenson,et al.  Sc2(mu2-O) trapped in a fullerene cage: the isolation and structural characterization of Sc2(mu2-O)@C(s)6-C82 and the relevance of the thermal and entropic effects in fullerene isomer selection. , 2010, Journal of the American Chemical Society.

[15]  A. Rodríguez‐Fortea,et al.  Endohedral metallofullerenes: a unique host-guest association. , 2011, Chemical Society reviews.

[16]  Xing Lu,et al.  Current status and future developments of endohedral metallofullerenes. , 2012, Chemical Society reviews.

[17]  C. Brabec,et al.  A paradigmatic change: linking fullerenes to electron acceptors. , 2012, Journal of the American Chemical Society.

[18]  Takeshi Akasaka,et al.  Structural determination of metallofullerene Sc3C82 revisited: a surprising finding. , 2005, Journal of the American Chemical Society.

[19]  A. Popov,et al.  A pseudoatom in a cage: trimetallofullerene Y(3)@C(80) mimics y(3)n@c(80) with nitrogen substituted by a pseudoatom. , 2010, ACS nano.

[20]  Ning Chen,et al.  Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40-50) by the introduction of SO2. , 2010, Chemical communications.

[21]  Steven Stevenson,et al.  Trimetallic nitride template endohedral metallofullerenes: discovery, structural characterization, reactivity, and applications. , 2013, Accounts of chemical research.

[22]  Ning Chen,et al.  Sc2S@C(s)(10528)-C72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. , 2012, Journal of the American Chemical Society.

[23]  Shangfeng Yang,et al.  A facile route to the non-IPR fullerene Sc3N@C68: synthesis, spectroscopic characterization, and density functional theory computations (IPR=isolated pentagon rule). , 2006, Chemistry.

[24]  G. Briggs,et al.  Purification by HPLC and the UV/Vis absorption spectra of the nitrogen-containing incar-fullerenes iNC60, and iNC70. , 2004, Chemical communications.

[25]  C. Beavers,et al.  A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc4(mu3-O)3@Ih-C80. , 2010, Chemical communications.

[26]  M. Krause,et al.  Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength. , 2005, Angewandte Chemie.

[27]  S. Nagase,et al.  The effect of atomic nitrogen on the C(60) cage. , 2010, Chemical communications.

[28]  Yulan Liang,et al.  Dual Electron Acceptor/Electron Donor Character of Endohedral Nitride Clusterfullerenes , 2014 .

[29]  Xing Lu,et al.  The long-believed Sc2@C(2v)(17)-C84 is actually Sc2C2@C(2v)(9)-C82: unambiguous structure assignment and chemical functionalization. , 2012, Angewandte Chemie.

[30]  Marilyn M. Olmstead,et al.  Isolation and Structural Characterization of a Family of Endohedral Fullerenes Including the Large, Chiral Cage Fullerenes Tb3N@C88 and Tb3N@C86 as well as the Ih and D5h Isomers of Tb3N@C80 , 2007 .

[31]  Xing Lu,et al.  An Improbable Monometallic Cluster Entrapped in a Popular Fullerene Cage: YCN@Cs(6)-C82 , 2013, Scientific Reports.

[32]  E. Hajdu,et al.  Materials science: A stable non-classical metallofullerene family , 2000, Nature.

[33]  P. Fatouros,et al.  In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. , 2006, Radiology.

[34]  Luis Echegoyen,et al.  Chemical, electrochemical, and structural properties of endohedral metallofullerenes. , 2009, Angewandte Chemie.

[35]  M. Sakata,et al.  A Scandium Carbide Endohedral Metallofullerene: (Sc2 C2 )@C84. , 2001, Angewandte Chemie.

[36]  Ning Chen,et al.  Sc2S@C2(7892)–C70: a metallic sulfide cluster inside a non-IPR C70 cage , 2013 .

[37]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.

[38]  Y. Murata,et al.  Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis , 2005, Science.

[39]  Weidinger,et al.  Observation of Atomlike Nitrogen in Nitrogen-Implanted Solid C60. , 1996, Physical review letters.

[40]  L. Echegoyen,et al.  Electrochemistry of Fullerenes and Their Derivatives , 1998 .

[41]  Leland C. Allen,et al.  Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms , 1989 .

[42]  Wei Xu,et al.  Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc(3)NC@C(80)-I(h). , 2010, Journal of the American Chemical Society.

[43]  Luis Echegoyen,et al.  Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule. , 2009, Journal of the American Chemical Society.

[44]  D. Guldi Fullerenes: three dimensional electron acceptor materials , 2000 .

[45]  Steven Stevenson,et al.  The shape of the Sc2(μ2-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc2(μ2-S)@C(s)(6)-C82 and Sc2(μ2-S)@C(3v)(8)-C82. , 2011, Journal of the American Chemical Society.

[46]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[47]  Lothar Dunsch,et al.  Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. , 2007, Angewandte Chemie.

[48]  Zdenek Slanina,et al.  Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C2v(5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. , 2011, Journal of the American Chemical Society.

[49]  D. Guldi,et al.  A metallofullerene electron donor that powers an efficient spin flip in a linear electron donor-acceptor conjugate. , 2013, Journal of the American Chemical Society.

[50]  R. D. Bolskar Gadofullerene MRI contrast agents. , 2008, Nanomedicine.

[51]  M. Sakata,et al.  Giant motion of La atom inside C82 cage , 2000 .

[52]  Lothar Dunsch,et al.  Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. , 2010, Journal of the American Chemical Society.