Estimating monotone convex functions via sequential shape modification

We propose a sequential method to estimate monotone convex functions that consists of: (i) monotone regression via solving a constrained least square (LS) problem and (ii) convexification of the monotone regression estimate via solving a uniform approximation problem with associated constraints. We show that this method is faster than the constrained LS method. The ratio of computation time increases as data size increases. Moreover, we show that, under an appropriate smoothness condition, the uniform convergence rate achieved by the proposed method is nearly comparable to the best achievable rate for a non-parametric estimate which ignores the shape constraint. Simulation studies show that our method is comparable to the constrained LS method in estimation error. We illustrate our method by analysing ground water level data of wells in Korea.

[1]  H. Chernoff Estimation of the mode , 1964 .

[2]  Cécile Durot,et al.  Sharp asymptotics for isotonic regression , 2002 .

[3]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[4]  Gordon Pledger,et al.  On Consistency in Monotonic Regression , 1973 .

[5]  F. T. Wright The Asymptotic Behavior of Monotone Regression Estimates , 1981 .

[6]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[7]  D. L. Hanson,et al.  Consistency in Concave Regression , 1976 .

[8]  J. Wellner,et al.  Computing Chernoff's Distribution , 2001 .

[9]  Zengo Furukawa,et al.  A General Framework for , 1991 .

[10]  H. D. Brunk On the Estimation of Parameters Restricted by Inequalities , 1958 .

[11]  Prakasa Rao Nonparametric functional estimation , 1983 .

[12]  H. D. Brunk Maximum Likelihood Estimates of Monotone Parameters , 1955 .

[13]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[14]  E. Mammen,et al.  A General Projection Framework for Constrained Smoothing , 2001 .

[15]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[16]  J. Wellner,et al.  EMPIRICAL PROCESSES WITH APPLICATIONS TO STATISTICS (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[17]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[18]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[19]  E. Mammen Nonparametric regression under qualitative smoothness assumptions , 1991 .

[20]  Hari Mukerjee,et al.  Monotone Nonparametric Regression , 1988 .

[21]  E. Mammen,et al.  A General Framework for Constrained Smoothing , 1998 .