Estimating monotone convex functions via sequential shape modification
暂无分享,去创建一个
Seung-Jean Kim | Johan Lim | Yongsung Joo | Seung-Jean Kim | Johan Lim | Y. Joo | Sanghan Lee | Sanghan Lee
[1] H. Chernoff. Estimation of the mode , 1964 .
[2] Cécile Durot,et al. Sharp asymptotics for isotonic regression , 2002 .
[3] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[4] Gordon Pledger,et al. On Consistency in Monotonic Regression , 1973 .
[5] F. T. Wright. The Asymptotic Behavior of Monotone Regression Estimates , 1981 .
[6] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[7] D. L. Hanson,et al. Consistency in Concave Regression , 1976 .
[8] J. Wellner,et al. Computing Chernoff's Distribution , 2001 .
[9] Zengo Furukawa,et al. A General Framework for , 1991 .
[10] H. D. Brunk. On the Estimation of Parameters Restricted by Inequalities , 1958 .
[11] Prakasa Rao. Nonparametric functional estimation , 1983 .
[12] H. D. Brunk. Maximum Likelihood Estimates of Monotone Parameters , 1955 .
[13] J. Kalbfleisch. Statistical Inference Under Order Restrictions , 1975 .
[14] E. Mammen,et al. A General Projection Framework for Constrained Smoothing , 2001 .
[15] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[16] J. Wellner,et al. EMPIRICAL PROCESSES WITH APPLICATIONS TO STATISTICS (Wiley Series in Probability and Mathematical Statistics) , 1987 .
[17] H. D. Brunk,et al. Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .
[18] F. T. Wright,et al. Order restricted statistical inference , 1988 .
[19] E. Mammen. Nonparametric regression under qualitative smoothness assumptions , 1991 .
[20] Hari Mukerjee,et al. Monotone Nonparametric Regression , 1988 .
[21] E. Mammen,et al. A General Framework for Constrained Smoothing , 1998 .